Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts presents a complete overview of the selective catalytic reduction of NOx by ammonia/urea. The book starts with an illustration of the technology in the framework of the current context (legislation, market, system configurations), covers the fundamental aspects of the SCR process (catalysts, chemistry, mechanism, kinetics) and analyzes its application to useful topics such as modeling of full scale monolith catalysts, control aspects, ammonia injections systems and integration with other devices for combined removal of pollutants.
Engineers, applied scientists, students, and individuals working to reduceemissions and advance diesel engine technology will find the secondedition of Diesel Emissions and Their Control to be an indispensablereference. Whether readers are at the outset of their learning journey orseeking to deepen their expertise, this comprehensive reference bookcaters to a wide audience.In this substantial update to the 2006 classic, the authors have expandedthe coverage of the latest emission technologies. With the industryevolving rapidly, the book ensures that readers are well-informed aboutthe most recent advances in commercial diesel engines, providing acompetitive edge in their respective fields. The second edition has alsostreamlined the content to focus on the most promising technologies.This book is rooted in the wealth of information available on DieselNet.com, where the “Technology Guide” papers offer in-depth insights. Eachchapter includes links to relevant online materials, granting readers accessto even more expertise and knowledge.The second edition is organized into six parts, providing a structuredjourney through every aspect of diesel engines and emissions control: Part I: A foundational exploration of the diesel engine, combustion, andessential subsystems. Part II: An in-depth look at emission characterization, health andenvironmental impacts, testing methods, and global regulations. Part III: A comprehensive overview of diesel fuels, covering petroleumdiesel, alternative fuels, and engine lubricants. Part IV: An exploration of engine efficiency and emission controltechnologies, from exhaust gas recirculation to engine control. Part V: The latest developments in diesel exhaust aftertreatment,encompassing catalyst technologies and particulate filters. Part VI: A historical journey through the evolution of dieselengine technology, with a focus on heavy-duty engines in the NorthAmerican market. (ISBN 9781468605693, ISBN 9781468605709, ISBN 9781468605716, DOI: 10.4271/9781468605709)
Engineers, applied scientists, students, and individuals working to reduceemissions and advance diesel engine technology will find the secondedition of Diesel Emissions and Their Control to be an indispensablereference. Whether readers are at the outset of their learning journey orseeking to deepen their expertise, this comprehensive reference bookcaters to a wide audience.In this substantial update to the 2006 classic, the authors have expandedthe coverage of the latest emission technologies. With the industryevolving rapidly, the book ensures that readers are well-informed aboutthe most recent advances in commercial diesel engines, providing acompetitive edge in their respective fields. The second edition has alsostreamlined the content to focus on the most promising technologies.This book is rooted in the wealth of information available on DieselNet.com, where the “Technology Guide” papers offer in-depth insights. Eachchapter includes links to relevant online materials, granting readers accessto even more expertise and knowledge.The second edition is organized into six parts, providing a structuredjourney through every aspect of diesel engines and emissions control: Part I: A foundational exploration of the diesel engine, combustion, andessential subsystems. Part II: An in-depth look at emission characterization, health andenvironmental impacts, testing methods, and global regulations. Part III: A comprehensive overview of diesel fuels, covering petroleumdiesel, alternative fuels, and engine lubricants. Part IV: An exploration of engine efficiency and emission controltechnologies, from exhaust gas recirculation to engine control. Part V: The latest developments in diesel exhaust aftertreatment,encompassing catalyst technologies and particulate filters. Part VI: A historical journey through the evolution of dieselengine technology, with a focus on heavy-duty engines in the NorthAmerican market. (ISBN 9781468605693, ISBN 9781468605709, ISBN 9781468605716, DOI: 10.4271/9781468605709)
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
This book is intended to serve as a comprehensive reference on the design and development of diesel engines. It talks about combustion and gas exchange processes with important references to emissions and fuel consumption and descriptions of the design of various parts of an engine, its coolants and lubricants, and emission control and optimization techniques. Some of the topics covered are turbocharging and supercharging, noise and vibrational control, emission and combustion control, and the future of heavy duty diesel engines. This volume will be of interest to researchers and professionals working in this area.
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
This volume includes versions of papers selected from those presented at the THIESEL 2000 Conference on Thermofluidynamic Processes in Diesel Engines, held at the Universidad Politecnica de Valencia, during the period of September th th 13 to 15 , 2000. The papers are grouped into seven thematic areas: State of the Art and Prospective, Fuels for Diesel Engines, Injection System and Spray Formation, Combustion and Pollutant Formation, Modelling, Experimental Techniques, and Air Management. These areas cover most of the technologies and research strategies that may allow Light Duty and Heavy Duty Diesel engines to comply with current and forthcoming emission standards, while maintaining or improving fuel consumption. The main objectives of the conference were to bring together ideas and experience from Industry and Universities to facilitate interchange of information and to promote discussion of future research and development needs. The technical papers emphasised the use diagnostic and simulation techniques and their relationship to engineering practice and the advancement of the Diesel engine. We hope that this approach, which proved to be successful at the Conference, is reflected in this volume. We thank all those who contributed to the success of the Conference, and particularly the members of the Advisory Committee who assessed abstracts and chaired many of the technical sessions. Weare also grateful to participants who presented their work or contributed to the many discussions. Finally, the Conference benefitted from financial support from the organisations listed below and we are glad to have this opportunity to record our gratitude.