This collection of articles covers the hottest topics in contemporary applied mathematics. Multiscale modeling, material computing, symplectic methods, parallel computing, mathematical biology, applied differential equations and engineering computing problems are all included. The book contains the latest results of many leading scientists and provides a window on new trends in research in the field.
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.
This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with and visualize some beautiful part of mathematics. --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.