Frontiers in Statistics

Frontiers in Statistics

Author: Jianqing Fan

Publisher: World Scientific

Published: 2006

Total Pages: 552

ISBN-13: 1860946704

DOWNLOAD EBOOK

During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel's distinguished contributions.


Artificial Intelligence Frontiers in Statistics

Artificial Intelligence Frontiers in Statistics

Author: David J. Hand

Publisher: CRC Press

Published: 2020-11-26

Total Pages: 431

ISBN-13: 100015291X

DOWNLOAD EBOOK

This book presents a summary of recent work on the interface between artificial intelligence and statistics. It does this through a series of papers by different authors working in different areas of this interface. These papers are a selected and referenced subset of papers presented at the 3rd Interntional Workshop on Artificial Intelligence and Statistics, Florida, January 1991.


Frontiers in Data Science

Frontiers in Data Science

Author: Matthias Dehmer

Publisher: CRC Press

Published: 2017-10-16

Total Pages: 404

ISBN-13: 135164324X

DOWNLOAD EBOOK

Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.


Frontiers of Statistical Decision Making and Bayesian Analysis

Frontiers of Statistical Decision Making and Bayesian Analysis

Author: Ming-Hui Chen

Publisher: Springer Science & Business Media

Published: 2010-07-24

Total Pages: 631

ISBN-13: 1441969446

DOWNLOAD EBOOK

Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.


Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis

Author: National Research Council

Publisher: National Academies Press

Published: 2013-09-03

Total Pages: 191

ISBN-13: 0309287812

DOWNLOAD EBOOK

Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.


Statistical Techniques for Neuroscientists

Statistical Techniques for Neuroscientists

Author: Young K. Truong

Publisher: CRC Press

Published: 2016-10-04

Total Pages: 349

ISBN-13: 1315356759

DOWNLOAD EBOOK

Statistical Techniques for Neuroscientists introduces new and useful methods for data analysis involving simultaneous recording of neuron or large cluster (brain region) neuron activity. The statistical estimation and tests of hypotheses are based on the likelihood principle derived from stationary point processes and time series. Algorithms and software development are given in each chapter to reproduce the computer simulated results described therein. The book examines current statistical methods for solving emerging problems in neuroscience. These methods have been applied to data involving multichannel neural spike train, spike sorting, blind source separation, functional and effective neural connectivity, spatiotemporal modeling, and multimodal neuroimaging techniques. The author provides an overview of various methods being applied to specific research areas of neuroscience, emphasizing statistical principles and their software. The book includes examples and experimental data so that readers can understand the principles and master the methods. The first part of the book deals with the traditional multivariate time series analysis applied to the context of multichannel spike trains and fMRI using respectively the probability structures or likelihood associated with time-to-fire and discrete Fourier transforms (DFT) of point processes. The second part introduces a relatively new form of statistical spatiotemporal modeling for fMRI and EEG data analysis. In addition to neural scientists and statisticians, anyone wishing to employ intense computing methods to extract important features and information directly from data rather than relying heavily on models built on leading cases such as linear regression or Gaussian processes will find this book extremely helpful.


Multivariate Statistical Methods

Multivariate Statistical Methods

Author: György Terdik

Publisher: Springer Nature

Published: 2021-10-26

Total Pages: 424

ISBN-13: 3030813924

DOWNLOAD EBOOK

This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.


Bayesian Statistics for Beginners

Bayesian Statistics for Beginners

Author: Therese M. Donovan

Publisher: Oxford University Press, USA

Published: 2019

Total Pages: 430

ISBN-13: 0198841299

DOWNLOAD EBOOK

This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.


Mathematical and Statistics Anxiety: Educational, Social, Developmental and Cognitive Perspectives

Mathematical and Statistics Anxiety: Educational, Social, Developmental and Cognitive Perspectives

Author: Kinga Morsanyi

Publisher: Frontiers Media SA

Published: 2017-01-19

Total Pages: 196

ISBN-13: 2889450767

DOWNLOAD EBOOK

Mathematical anxiety is a feeling of tension, apprehension or fear which arises when a person is faced with mathematical content. The negative consequences of mathematical anxiety are well-documented. Students with high levels of mathematical anxiety might underperform in important test situations, they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective mathematics courses, which also affects their career opportunities. Although at the university level many students do not continue to study mathematics, social science students are confronted with the fact that their disciplines involve learning about statistics - another potential source of anxiety for students who are uncomfortable with dealing with numerical content. Research on mathematical anxiety is a truly interdisciplinary field with contributions from educational, developmental, cognitive, social and neuroscience researchers. The current collection of papers demonstrates the diversity of the field, offering both new empirical contributions and reviews of existing studies. The contributors also outline future directions for this line of research.


Bayesian Statistics the Fun Way

Bayesian Statistics the Fun Way

Author: Will Kurt

Publisher: No Starch Press

Published: 2019-07-09

Total Pages: 258

ISBN-13: 1593279566

DOWNLOAD EBOOK

Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.