This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.
This book is the second volume in a set of books dealing with the evolution of technology, IT and organizational approaches and what this means for industrial equipment. The authors address this increasing complexity in two parts, focusing specifically on the field of Prognostics and Health Management (PHM). Having tackled the PHM cycle in the first volume, the purpose of this book is to tackle the other phases of PHM, including the traceability of data, information and knowledge, and the ability to make decisions accordingly. The book concludes with a summary analysis and perspectives regarding this emerging domain, since without traceability, knowledge and decision, any prediction of the health state of a system cannot be exploited.
This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.
In the age of digitalization and the fourth industrial revolution, predictive maintenance is becoming increasingly important as a proactive maintenance type. Despite the economic benefits that predictive maintenance generates for companies, its practical application is still in its early stages. This is often due to two prevailing challenges. First, there is a deficiency of knowledge about predictive maintenance and its concrete realization. Second, there is a lack of high quality and rich data of historical machine failures. To increase the representativeness of data, data from several similar machines (i.e. a fleet) should be considered. To foster the effective implementation of predictive maintenance, supportive guidance in the realization of a predictive maintenance project is needed. For this reason, this dissertation presents a process reference model and a development method for fleet prognostics. The process reference model describes a comprehensive and application-independent view of the complete predictive maintenance process. The model is supplemented by the fleet prognostic development method. To address the specific characteristics of the fleet, a systematic process is depicted which provides a means to assess the heterogeneity of the fleet from a data-driven perspective and simplifies the design of an algorithm considering fleet data. Finally, the applicability and value of the research results are demonstrated with three industrial cases
This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.
This book constitutes the refereed proceedings of the 14th International Conference on Metaheuristics, MIC 2022, held in Syracuse, Italy, in July 2022. The 48 full papers together with 17 short papers presented were carefully reviewed and selected from 72 submissions. The papers detail metaheuristic techniques. Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This timely Handbook examines the rapidly expanding research area of digital platforms and business ecosystems in the context of manufacturing industries. Chapters analyze core topics such as business model transformation, ecosystem design, and governance, offering an up-to-date overview of crucial research.
This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.
Demonstrating the latest research and analysis in the area of through-life engineering services (TES), this book utilizes case studies and expert analysis from an international array of practitioners and researchers – who together represent multiple manufacturing sectors: aerospace, railway and automotive – to maximize reader insights into the field of through-life engineering services. As part of the EPSRC Centre in Through-life Engineering Services program to support the academic and industrial community, this book presents an overview of non-destructive testing techniques and applications and provides the reader with the information needed to assess degradation and possible automation of through-life engineering service activities . The latest developments in maintenance-repair-overhaul (MRO) are presented with emphasis on cleaning technologies, repair and overhaul approaches and planning and digital assistance. The impact of these technologies on sustainable enterprises is also analyzed. This book will help to support the existing TES community and will provide future studies with a strong base from which to analyze and apply techn9olgical trends to real world examples.