This book looks to expand on the relationship between Christoffel words and Markoff theory. Part 1 focuses on the classical theory of Markoff, while part II explores the more advanced and recent results around Christoffel words.
The two parts of this text are based on two series of lectures delivered by Jean Berstel and Christophe Reutenauer in March 2007 at the Centre de Recherches Mathematiques, Montreal, Canada. Part I represents the first modern and comprehensive exposition of the theory of Christoffel words. Part II presents numerous combinatorial and algorithmic aspects of repetition-free words stemming from the work of Axel Thue - a pioneer in the theory of combinatorics on words. A beginner to the theory of combinatorics on words will be motivated by the numerous examples, and the large variety of exercises, which make the book unique at this level of exposition. The clean and streamlined exposition and the extensive bibliography will also be appreciated. After reading this book, beginners should be ready to read modern research papers in this rapidly growing field and contribute their own research to its development. Experienced readers will be interested in the finitary approach to Sturmian words that Christoffel words offer, as well as the novel geometric and algebraic approach chosen for their exposition. They will also appreciate the historical presentation of the Thue-Morse word and its applications, and the novel results on Abelian repetition-free words.
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.
This book constitutes the refereed proceedings of the 13th International Conference on Combinatorics on Words, WORDS 2021, held virtually in September 2021. The 14 revised full papers presented in this book together with 2 invited talks were carefully reviewed and selected from 18 submissions. WORDS is the main conference series devoted to the mathematical theory of words. In particular, the combinatorial, algebraic and algorithmic aspects of words are emphasized. Motivations may also come from other domains such as theoretical computer science, bioinformatics, digital geometry, symbolic dynamics, numeration systems, text processing, number theory, etc.
This book constitutes the refereed proceedings of the 12th International Conference on Combinatorics on Words, WORDS 2019, held in Loughborough, UK, in September 2019. The 21 revised full papers presented in this book together with 5 invited talks were carefully reviewed and selected from 34 submissions. WORDS is the main conference series devoted to the mathematical theory of words. In particular, the combinatorial, algebraic and algorithmic aspects of words are emphasized. Motivations may also come from other domains such as theoretical computer science, bioinformatics, digital geometry, symbolic dynamics, numeration systems, text processing, number theory, etc.
This book takes the reader on a mathematical journey, from a number-theoretic point of view, to the realm of Markov’s theorem and the uniqueness conjecture, gradually unfolding many beautiful connections until everything falls into place in the proof of Markov’s theorem. What makes the Markov theme so attractive is that it appears in an astounding variety of different fields, from number theory to combinatorics, from classical groups and geometry to the world of graphs and words. On the way, there are also introductory forays into some fascinating topics that do not belong to the standard curriculum, such as Farey fractions, modular and free groups, hyperbolic planes, and algebraic words. The book closes with a discussion of the current state of knowledge about the uniqueness conjecture, which remains an open challenge to this day. All the material should be accessible to upper-level undergraduates with some background in number theory, and anything beyond this level is fully explained in the text. This is not a monograph in the usual sense concentrating on a specific topic. Instead, it narrates in five parts – Numbers, Trees, Groups, Words, Finale – the story of a discovery in one field and its many manifestations in others, as a tribute to a great mathematical achievement and as an intellectual pleasure, contemplating the marvellous unity of all mathematics.
This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition – with full proofs – of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.
This book constitutes the refereed proceedings of the Second International Conference on Algebraic Informatics, CAI 2007, held in Thessaloniki, Greece, in May 2007. The 10 revised full papers presented together with 9 invited papers were carefully reviewed and selected from 29 submissions. The papers cover topics such as algebraic semantics on graphs and trees, formal power series, syntactic objects, algebraic picture processing, infinite computation, acceptors and transducers for strings, trees, graphs, arrays, etc., and decision problems.
Although Lie polynomials first appeared at the turn of the century, there have been many recent developments especially from the point of view of representation theory. This book covers all aspects, with emphasis on the algebraic and combinatorial point of view as well as representation theory.