Geothermal Reservoir Engineering

Geothermal Reservoir Engineering

Author: Malcolm Alister Grant

Publisher: Academic Press

Published: 2011-04-01

Total Pages: 379

ISBN-13: 0123838819

DOWNLOAD EBOOK

As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The book focuses particularly on the evaluation of potential sites and provides detailed guidance on the field management of the power plants built on them. With over 100 pages of new material informed by the breakthroughs of the last 25 years, Geothermal Reservoir Engineering remains the only training tool and professional reference dedicated to advising both new and experienced geothermal reservoir engineers. - The only resource available to help geothermal professionals make smart choices in field site selection and reservoir management - Practical focus eschews theory and basics- getting right to the heart of the important issues encountered in the field - Updates include coverage of advances in EGS (enhanced geothermal systems), well stimulation, well modeling, extensive field histories and preparing data for reservoir simulation - Case studies provide cautionary tales and best practices that can only be imparted by a seasoned expert


Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data

Fracture Characterization in Geothermal Reservoirs Using Time-lapse Electric Potential Data

Author: Lilja Magnúsdóttir

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The configuration of fractures in a geothermal reservoir is central to the performance of the system. The interconnected fractures control the heat and mass transport in the reservoir and if the fluid reaches production wells before it is fully heated, unfavorable effects on energy production may result due to decreasing fluid enthalpies. Consequently, inappropriate placing of injection or production wells can lead to premature thermal breakthrough. Thus, fracture characterization in geothermal reservoirs is an important task in order to design the recovery strategy appropriately and increase the overall efficiency of the power production. This is true both in naturally fractured geothermal systems as well as in Enhanced Geothermal Systems (EGS) with man-made fractures produced by hydraulic stimulation. In this study, the aim was to estimate fracture connectivity in geothermal reservoirs using a conductive fluid injection and an inversion of time-lapse electric potential data. Discrete fracture networks were modeled and a flow simulator was used first to simulate the flow of a conductive tracer through the reservoirs. Then, the simulator was applied to solve the electric fields at each time step by utilizing the analogy between Ohm's law and Darcy's law. The electric potential difference between well-pairs drops as a conductive fluid fills fracture paths from the injector towards the producer. Therefore, the time-lapse electric potential data can be representative of the connectivity of the fracture network. Flow and electric simulations were performed on models of various fracture networks and inverse modeling was used to match reservoir models to other fracture networks in a library of networks by comparing the time-histories of the electric potential. Two fracture characterization indices were investigated for describing the character of the fractured reservoirs; the fractional connected area and the spatial fractal dimension. In most cases, the electrical potential approach was used successfully to estimate both the fractional connected area of the reservoirs and the spatial fractal dimension. The locations of the linked fracture sets were also predicted correctly. Next, the electric method was compared to using only the simple tracer return curves at the producers in the inverse analysis. The study showed that the fracture characterization indices were estimated somewhat better using the electric approach. The locations of connected areas in the predicted network were also in many cases incorrect when only the tracer return curves were used. The use of the electric approach to predict thermal return was investigated and compared to using just the simple tracer return curves. The electric approach predicted the thermal return curves relatively accurately. However, in some cases the tracer return gave a better estimation of the thermal behavior. The electric measurements are affected by both the time it takes for the conductive tracer to reach the production well, as well as the overall location of the connected areas. When only the tracer return curves are used in the inverse analysis, only the concentration of tracer at the producer is measured but there is a good correlation between the tracer breakthrough time and the thermal breakthrough times. Thus, the tracer return curves can predict the thermal return accurately but the overall location of fractures might not be predicted correctly. The electric data and the tracer return data were also used together in an inverse analysis to predict the thermal returns. The results were in some cases somewhat better than using only the tracer return curves or only the electric data. A different injection scheme was also tested for both approaches. The electric data characterized the overall fracture network better than the tracer return curves so when the well pattern was changed from what was used during the tracer and electric measurements, the electric approach predicted the new thermal return better. In addition, the thermal return was predicted considerably better using the electric approach when measurements over a shorter period of time were used in the inverse analysis. In addition to characterizing the fracture distribution better, the electric approach can give information about the conductive fluid flowing through the fracture network even before it has reached the production wells.


Geothermal Energy in Europe

Geothermal Energy in Europe

Author: J. C. Bresee

Publisher: CRC Press

Published: 1992

Total Pages: 362

ISBN-13: 9782881245237

DOWNLOAD EBOOK

The report of a research project in eastern France, a pilot study for a much larger effort to determine whether geothermal energy resources can be developed in areas without natural geothermal reservoirs, which includes a good deal of industrial northern Europe. The idea is to drill a hole deep enough to hit hot rock, then circulate high-pressure water between the hot rock and heat exchangers at the surface; it was developed at Los Alamos National Laboratories. Includes a half-page subject index. Annotation copyright by Book News, Inc., Portland, OR


Analytic Element Modeling of Groundwater Flow

Analytic Element Modeling of Groundwater Flow

Author: H. M. Haitjema

Publisher: Elsevier

Published: 1995-09-20

Total Pages: 407

ISBN-13: 0080499104

DOWNLOAD EBOOK

Modeling has become an essential tool for the groundwater hydrologist. Where field data is limited, the analytic element method (AEM) is rapidly becoming the modeling method of choice, especially given the availability of affordable modeling software. Analytic Element Modeling of Groundwater Flow provides all the basics necessary to approach AEM successfully, including a presentation of fundamental concepts and a thorough introduction to Dupuit-Forchheimerflow. This book is unique in its emphasis on the actual use of analytic element models. Real-world examples complement material presented in the text. An educational version of the analytic element program GFLOW is included to allow the reader to reproduce the various solutions to groundwater flow problems discussed in the text. Researchers and graduate students in groundwater hydrology, geology, andengineering will find this book an indispensable resource. * * Provides a fundamental introduction to the use of the analytic element method. * Offers a step-by-step approach to groundwater flow modeling. * Includes an educational version of the GFLOW modeling software.


Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow

Author: National Research Council

Publisher: National Academies Press

Published: 1996-08-27

Total Pages: 568

ISBN-13: 0309049962

DOWNLOAD EBOOK

Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.


Injection Into a Fractured Geothermal Reservoir

Injection Into a Fractured Geothermal Reservoir

Author:

Publisher:

Published: 1980

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100°C water is injected into a 300°C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.