Energy Research Abstracts
Author:
Publisher:
Published: 1985
Total Pages: 496
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 1985
Total Pages: 496
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1985
Total Pages: 708
ISBN-13:
DOWNLOAD EBOOKSemiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Author:
Publisher:
Published: 1985
Total Pages: 748
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1985
Total Pages: 1016
ISBN-13:
DOWNLOAD EBOOKSections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.
Author:
Publisher:
Published: 1985
Total Pages: 976
ISBN-13:
DOWNLOAD EBOOKAuthor: Lee Davison
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 496
ISBN-13: 1461223202
DOWNLOAD EBOOKThis volume concerns the fracture and fragmentation of solid materials that occurs when they are subjected to extremes of stress applied at the highest possible rates. The plan for the volume is to address experimental, theoretical, and com putational aspects of high-rate dynamic fracture and fragmentation, with emphasis on recent work. We begin with several chapters in which the emphasis falls on experimental methods and observations. These chapters address both macroscopic responses and the microscopic cause of these re sponses. This is followed by several chapters emphasizing modeling-the physical explanation and mathematical representation of the observations. Some of the models are deterministic, while others focus on the stochastic aspects of the observations. Often, the ov\!rall objective of investigation of dynamic fracture and fragmentation phenomena is provision of a means for predicting the entire course of an event that begins with a stimulus such as an impact and proceeds through a complicated deformation and fracture pro cess that results in disintegration of the body and formation of a rapidly expanding cloud of debris fragments. Analysis of this event usually involves development of a continuum theory and computer code that captures the experimental observations by incorporating models of the important pheno mena into a comprehensive description of the deformation and fracture pro cess. It is to this task that the work of the last few chapters is devoted.
Author: J. R. Asay
Publisher:
Published: 1993
Total Pages: 416
ISBN-13:
DOWNLOAD EBOOKThis book presents a set of basic understandings of the behavior and response of solids to propagating shock waves. The propagation of shock waves in a solid body is accompanied by large compressions, decompression, and shear. Thus, the shear strength of solids and any inelastic response due to shock wave propagation is of the utmost importance. Furthermore, shock compres sion of solids is always accompanied by heating, and the rise of local tempera ture which may be due to both compression and dissipation. For many solids, under a certain range of impact pressures, a two-wave structure arises such that the first wave, called the elastic prescursor, travels with the speed of sound; and the second wave, called a plastic shock wave, travels at a slower speed. Shock-wave loading of solids is normally accomplished by either projectile impact, such as produced by guns or by explosives. The shock heating and compression of solids covers a wide range of temperatures and densities. For example, the temperature may be as high as a few electron volts (1 eV = 11,500 K) for very strong shocks and the densification may be as high as four times the normal density.
Author:
Publisher:
Published: 1987
Total Pages: 168
ISBN-13:
DOWNLOAD EBOOKSee journals under US Geological survey. Prof. paper 1310.