Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)

Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)

Author: Francesco Mainardi

Publisher: World Scientific

Published: 2022-08-16

Total Pages: 626

ISBN-13: 1783264004

DOWNLOAD EBOOK

Fractional Calculus and Waves in Linear Viscoelasticity (Second Edition) is a self-contained treatment of the mathematical theory of linear (uni-axial) viscoelasticity (constitutive equation and waves) with particular regard to models based on fractional calculus. It serves as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature. In particular the relevant role played by some special functions is pointed out along with their visualization through plots. Graphics are extensively used in the book and a large general bibliography is included at the end.This new edition keeps the structure of the first edition but each chapter has been revised and expanded, and new additions include a novel appendix on complete monotonic and Bernstein functions that are known to play a fundamental role in linear viscoelasticity.This book is suitable for engineers, graduate students and researchers interested in fractional calculus and continuum mechanics.


Fractional Calculus: Models And Numerical Methods (Second Edition)

Fractional Calculus: Models And Numerical Methods (Second Edition)

Author: Juan J Trujillo

Publisher: World Scientific

Published: 2016-09-15

Total Pages: 477

ISBN-13: 9813140054

DOWNLOAD EBOOK

This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book will keep in mind the trade-off between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice.The second edition of the book has been expanded and now includes a discussion of additional, newly developed numerical methods for fractional calculus and a chapter on the application of fractional calculus for modeling processes in the life sciences.


Basic Theory

Basic Theory

Author: Anatoly Kochubei

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-02-19

Total Pages: 683

ISBN-13: 3110570637

DOWNLOAD EBOOK

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.


Fractional Calculus: An Introduction For Physicists

Fractional Calculus: An Introduction For Physicists

Author: Richard Herrmann

Publisher: World Scientific

Published: 2011-02-21

Total Pages: 274

ISBN-13: 9814462071

DOWNLOAD EBOOK

Fractional calculus is undergoing rapid and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics.This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.


Fractional Calculus: Models And Numerical Methods

Fractional Calculus: Models And Numerical Methods

Author: Dumitru Baleanu

Publisher: World Scientific

Published: 2012-01-27

Total Pages: 426

ISBN-13: 9814458635

DOWNLOAD EBOOK

The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives of elementary functions, and so on.This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book was written with a trade-off in mind between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice. Numerical code is also provided.


Solved Exercises in Fractional Calculus

Solved Exercises in Fractional Calculus

Author: Edmundo Capelas de Oliveira

Publisher: Springer

Published: 2019-05-31

Total Pages: 330

ISBN-13: 303020524X

DOWNLOAD EBOOK

This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.


The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations

Author: Kai Diethelm

Publisher: Springer

Published: 2010-08-18

Total Pages: 251

ISBN-13: 3642145744

DOWNLOAD EBOOK

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.


Economic Dynamics with Memory

Economic Dynamics with Memory

Author: Vasily E. Tarasov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-01-18

Total Pages: 602

ISBN-13: 3110627450

DOWNLOAD EBOOK

This book presents the applications of fractional calculus, fractional operators of non-integer orders and fractional differential equations in describing economic dynamics with long memory. Generalizations of basic economic concepts, notions and methods for the economic processes with memory are suggested. New micro and macroeconomic models with continuous time are proposed to describe the fractional economic dynamics with long memory as well.