Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)

Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition)

Author: Francesco Mainardi

Publisher: World Scientific

Published: 2022-08-16

Total Pages: 626

ISBN-13: 1783264004

DOWNLOAD EBOOK

Fractional Calculus and Waves in Linear Viscoelasticity (Second Edition) is a self-contained treatment of the mathematical theory of linear (uni-axial) viscoelasticity (constitutive equation and waves) with particular regard to models based on fractional calculus. It serves as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature. In particular the relevant role played by some special functions is pointed out along with their visualization through plots. Graphics are extensively used in the book and a large general bibliography is included at the end.This new edition keeps the structure of the first edition but each chapter has been revised and expanded, and new additions include a novel appendix on complete monotonic and Bernstein functions that are known to play a fundamental role in linear viscoelasticity.This book is suitable for engineers, graduate students and researchers interested in fractional calculus and continuum mechanics.


Fractional Calculus: Theory and Applications

Fractional Calculus: Theory and Applications

Author: Francesco Mainardi

Publisher: MDPI

Published: 2018-09-20

Total Pages: 209

ISBN-13: 3038972061

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Fractional Calculus: Theory and Applications" that was published in Mathematics


Abel Integral Equations

Abel Integral Equations

Author: Rudolf Gorenflo

Publisher: Springer

Published: 2006-11-14

Total Pages: 225

ISBN-13: 3540469494

DOWNLOAD EBOOK

In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equations of the first kind problems of ill-posedness are discussed. Finally, some numerical methods are described. In the theoretical parts, emphasis is put on the aspects relevant to applications.


Mathematical Problems in Linear Viscoelasticity

Mathematical Problems in Linear Viscoelasticity

Author: Mauro Fabrizio

Publisher: SIAM

Published: 1992-01-01

Total Pages: 210

ISBN-13: 0898712661

DOWNLOAD EBOOK

Describes general mathematical modeling of viscoelastic materials as systems with fading memory. Discusses the interrelation between topics such as existence, uniqueness, and stability of initial boundary value problems, variational and extremum principles, and wave propagation. Demonstrates the deep connection between the properties of the solution to initial boundary value problems and the requirements of the general physical principles. Discusses special techniques and new methods, including Fourier and Laplace transforms, extremum principles via weight functions, and singular surfaces and discontinuity waves.


The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations

Author: Kai Diethelm

Publisher: Springer

Published: 2010-08-18

Total Pages: 251

ISBN-13: 3642145744

DOWNLOAD EBOOK

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.


Fractional Thermoelasticity

Fractional Thermoelasticity

Author: Yuriy Povstenko

Publisher: Springer

Published: 2015-02-26

Total Pages: 261

ISBN-13: 3319153358

DOWNLOAD EBOOK

This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research. The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators. This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of the book may also be used as additional reading material for courses on heat and mass transfer, continuum mechanics, thermal stresses as well as in fractional calculus and its applications for graduate and postgraduate students. Extensive references are included in order to stimulate further studies.


Fractional Calculus

Fractional Calculus

Author: Dumitru Baleanu

Publisher: World Scientific

Published: 2012

Total Pages: 426

ISBN-13: 9814355208

DOWNLOAD EBOOK

This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.


Fractional Differential Equations

Fractional Differential Equations

Author: Anatoly Kochubei

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-02-19

Total Pages: 528

ISBN-13: 3110571668

DOWNLOAD EBOOK

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.


Advances in Applied Mathematics and Approximation Theory

Advances in Applied Mathematics and Approximation Theory

Author: George A. Anastassiou

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 494

ISBN-13: 1461463939

DOWNLOAD EBOOK

Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at “Applied Mathematics and Approximation Theory 2012,” an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics.​


Waves with Power-Law Attenuation

Waves with Power-Law Attenuation

Author: Sverre Holm

Publisher: Springer

Published: 2019-04-15

Total Pages: 338

ISBN-13: 3030149277

DOWNLOAD EBOOK

This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.