This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.
This volume constitutes the proceedings of the 11th annual Symposium on Theoretical Aspects of Computer Science (STACS '94), held in Caen, France, February 24-26, 1994. Besides three prominent invited papers, the proceedings contains 60 accepted contributions chosen by the international program committee during a highly competitive reviewing process from a total of 234 submissions for 38 countries. The volume competently represents most areas of theoretical computer science with a certain emphasis on (parallel) algorithms and complexity.
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself.
This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...
Contains 15 contributions written by mathematicians from North America, Europe, and Asia, written in honor of the 60th birthday of Peter Orlik, one of the fathers of the topological study of general complex hyperplane arrangements. Topics include the cohomology of discriminantal arrangements and Orlik-Solomon algebras; plumbing graphs for normal surface-curve pairs; cohomology rings and nilpotent quotients of real and complex arrangements; remarks on critical points of phase functions and norms of Bethe vectors; and logarithmic forms and anti-invariant forms of reflection groups. Lacks a subject index. Annotation copyrighted by Book News, Inc., Portland, OR
Reflecting the work of an international panel of experts, the International Handbook on Psychopathic Disorders and the Law offers an in-depth and multidisciplinary look at key aspects of the development and etiology of psychopathic disorders, current methods of intervention, treatment and management, and how these disorders impact decision making in civil and criminal law.