This comprehensive new handbook is a one-stop engineering reference covering data converter fundamentals, techniques, and applications. Beginning with the basic theoretical elements necessary for a complete understanding of data converters, the book covers all the latest advances made in this changing field. Details are provided on the design of high-speec ADCs, high accuracy DACs and ADCs, sample-and-hold amplifiers, voltage sources and current reference,noise-shaping coding, sigma-delta converters, and much more.
This unique reference book offers a holistic description of the multifaceted field of systematic musicology, which is the study of music, its production and perception, and its cultural, historical and philosophical background. The seven sections reflect the main topics in this interdisciplinary subject. The first two parts discuss musical acoustics and signal processing, comprehensively describing the mathematical and physical fundamentals of musical sound generation and propagation. The complex interplay of physiology and psychology involved in sound and music perception is covered in the following sections, with a particular focus on psychoacoustics and the recently evolved research on embodied music cognition. In addition, a huge variety of technical applications for professional training, music composition and consumer electronics are presented. A section on music ethnology completes this comprehensive handbook. Music theory and philosophy of music are imbedded throughout. Carefully edited and written by internationally respected experts, it is an invaluable reference resource for professionals and graduate students alike.
With the proliferation of complex semiconductor devices containing digital, analog, mixed-signal and radio-frequency circuits, the economics of test has come to the forefront and today's engineer needs to be fluent in all four circuit types. Having access to a book that covers these topicswill help the evolving test engineer immensely and will be an invaluable resource. In addition, the second edition includes lengthy discussion on RF circuits, high-speed I/Os and probabilistic reasoning. Appropriate for the junior/senior university level, this textbook includes hundreds of examples,exercises and problems.
Digital Systems Design with FPGAs and CPLDs explains how to design and develop digital electronic systems using programmable logic devices (PLDs). Totally practical in nature, the book features numerous (quantify when known) case study designs using a variety of Field Programmable Gate Array (FPGA) and Complex Programmable Logic Devices (CPLD), for a range of applications from control and instrumentation to semiconductor automatic test equipment.Key features include:* Case studies that provide a walk through of the design process, highlighting the trade-offs involved.* Discussion of real world issues such as choice of device, pin-out, power supply, power supply decoupling, signal integrity- for embedding FPGAs within a PCB based design.With this book engineers will be able to:* Use PLD technology to develop digital and mixed signal electronic systems* Develop PLD based designs using both schematic capture and VHDL synthesis techniques* Interface a PLD to digital and mixed-signal systems* Undertake complete design exercises from design concept through to the build and test of PLD based electronic hardwareThis book will be ideal for electronic and computer engineering students taking a practical or Lab based course on digital systems development using PLDs and for engineers in industry looking for concrete advice on developing a digital system using a FPGA or CPLD as its core. - Case studies that provide a walk through of the design process, highlighting the trade-offs involved. - Discussion of real world issues such as choice of device, pin-out, power supply, power supply decoupling, signal integrity- for embedding FPGAs within a PCB based design.
This book is designed to serve as a hands-on professional reference with additional utility as a textbook for upper undergraduate and some graduate courses in digital logic design. This book is organized in such a way that that it can describe a number of RTL design scenarios, from simple to complex. The book constructs the logic design story from the fundamentals of logic design to advanced RTL design concepts. Keeping in view the importance of miniaturization today, the book gives practical information on the issues with ASIC RTL design and how to overcome these concerns. It clearly explains how to write an efficient RTL code and how to improve design performance. The book also describes advanced RTL design concepts such as low-power design, multiple clock-domain design, and SOC-based design. The practical orientation of the book makes it ideal for training programs for practicing design engineers and for short-term vocational programs. The contents of the book will also make it a useful read for students and hobbyists.
New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules
Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems.+Balances circuits theory with practical digital electronics applications.+Illustrates concepts with real devices.+Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach.+Written by two educators well known for their innovative teaching and research and their collaboration with industry.+Focuses on contemporary MOS technology.