This book addresses the theoretical, phenomenological and experimental aspects of supersymmetry in particle physics as well as its implications in cosmology.
In the environment of energy systems, the effective utilization of both conventional and renewable sources poses a major challenge. The integration of microgrid systems, crucial for harnessing energy from distributed sources, demands intricate solutions due to the inherent intermittency of these sources. Academic scholars engaged in power system research find themselves at the forefront of addressing issues such as energy source estimation, coordination in dynamic environments, and the effective utilization of artificial intelligence (AI) techniques. Intelligent Solutions for Sustainable Power Grids focuses on emerging research areas, this book addresses the uncertainty of renewable energy sources, employs state-of-the-art forecasting techniques, and explores the application of AI techniques for enhanced power system operations. From economic aspects to the digitalization of power systems, the book provides a holistic approach. Tailored for undergraduate and postgraduate students as well as seasoned researchers, it offers a roadmap to navigate the intricate landscape of modern power systems. Dive into a wealth of knowledge encompassing smart energy systems, renewable energy integration, stability analysis of microgrids, power quality enhancement, and much more. This book is not just a guide; it is the solution to the pressing challenges in the dynamic field of energy systems.
This book addresses the theoretical, phenomenological and experimental aspects of supersymmetry in particle physics as well as its implications in cosmology.
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.
These proceedings consist of plenary rapporteur talks covering topics of major interest to the high energy physics community and parallel sessions papers which describe recent research results and future plans.
Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.
The 1997 International Europhysics Conference on High Energy Physics was held at the campus of the Hebrew University of Jerusalem and at the Jerusalem Renaissance Hotel, from August 19th to August 25th, 1997. This was the first time that the European Physical Society had its High Energy Physics Conference outside the boundary of Europe. A total of 550 physicists participated in the conference with a total of 250 presentations in the parallel sessions and 26 presentations in the plenary sessions. The Board of the of the High Energy and Particle Physics division (HEPP) of the EPS acted as the Scientific Organizing Committee. The Board acknowl edges the help of the International Advisory Committee as well as that of the Local Organizing Committee. The conference was co-organized by the Hebrew University of Jerusalem and by the Weizmann Institute of Science, with important help by physi cists from the Israeli Institute of Technology (Technion) and the Tel Aviv University.