Foundry Manual

Foundry Manual

Author: United States Navy

Publisher:

Published: 2006-03-01

Total Pages: 312

ISBN-13: 9781410109002

DOWNLOAD EBOOK

This Manual is intended primarily for use by foundry personnel aboard repair ships and tenders. The recommended practices are based on procedures proved workable under Navy conditions and are supplemented by information from industrial sources. The Manual is divided into two general sections. The first section, chapters 1 through 13, contains information of a general nature, such as "How Metals Solidify," "Designing a Casting," "Sands for Molds and Cores," "Gates, Risers, and Chills," and "Description and Operation of Melting Furnaces." Subjects covered in these chapters are generally applicable to all of the metals that may be cast aboard ship. The second section, chapters 14 through 21, contains information on specific types of alloys, such as "Copper-Base Alloys," "Aluminum-Base Alloys," "Cast Iron," and "Steel." Specific melting practices, suggestions for sand mixes, molding practices, gating, and risering are covered in these chapters. This manual has been written with the "how-to-do-it" idea as the principal aim. Discussions as to the "why" of certain procedures have been kept to a minimum. This manual contains information that should result in the production of consistently better castings by repair ship personnel.


Design Rules in a Semiconductor Foundry

Design Rules in a Semiconductor Foundry

Author: Eitan N. Shauly

Publisher: CRC Press

Published: 2022-11-30

Total Pages: 831

ISBN-13: 1000631354

DOWNLOAD EBOOK

Nowadays over 50% of integrated circuits are fabricated at wafer foundries. This book presents a foundry-integrated perspective of the field and is a comprehensive and up-to-date manual designed to serve process, device, layout, and design engineers. It comprises chapters carefully selected to cover topics relevant for them to deal with their work. The book provides an insight into the different types of design rules (DRs) and considerations for setting new DRs. It discusses isolation, gate patterning, S/D contacts, metal lines, MOL, air gaps, and so on. It explains in detail the layout rules needed to support advanced planarization processes, different types of dummies, and related utilities as well as presents a large set of guidelines and layout-aware modeling for RF CMOS and analog modules. It also discusses the layout DRs for different mobility enhancement techniques and their related modeling, listing many of the dedicated rules for static random-access memory (SRAM), embedded polyfuse (ePF), and LogicNVM. The book also provides the setting and calibration of the process parameters set and describes the 28~20 nm planar MOSFET process flow for low-power and high-performance mobile applications in a step-by-step manner. It includes FEOL and BEOL physical and environmental tests for qualifications together with automotive qualification and design for automotive (DfA). Written for the professionals, the book belongs to the bookshelf of microelectronic discipline experts.