Foundations of Molecular Modeling and Simulation

Foundations of Molecular Modeling and Simulation

Author: Edward J. Maginn

Publisher: Springer Nature

Published: 2021-03-25

Total Pages: 228

ISBN-13: 9813366397

DOWNLOAD EBOOK

This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.


Foundations of Molecular Modeling and Simulation

Foundations of Molecular Modeling and Simulation

Author: Randall Q Snurr

Publisher: Springer

Published: 2016-06-01

Total Pages: 176

ISBN-13: 9811011281

DOWNLOAD EBOOK

This book is a collection of select proceedings of the FOMMS 2015 conference. FOMMS 2015 was the sixth triennial FOMMS conference showcasing applications of theory of computational quantum chemistry, molecular science, and engineering simulation. The theme of the 2015 meeting was on Molecular Modeling and the Materials Genome. This volume comprises chapters on many distinct applications of molecular modeling techniques. The content will be useful to researchers and students alike.


Molecular Modeling and Simulation

Molecular Modeling and Simulation

Author: Tamar Schlick

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 669

ISBN-13: 0387224645

DOWNLOAD EBOOK

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text


An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

Author: Gregory R. Bowman

Publisher: Springer Science & Business Media

Published: 2013-12-02

Total Pages: 148

ISBN-13: 9400776063

DOWNLOAD EBOOK

The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states. This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation.


Statistical Mechanics: Theory and Molecular Simulation

Statistical Mechanics: Theory and Molecular Simulation

Author: Mark Tuckerman

Publisher: OUP Oxford

Published: 2010-02-11

Total Pages: 719

ISBN-13: 0191523461

DOWNLOAD EBOOK

Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.


Numerical Simulation in Molecular Dynamics

Numerical Simulation in Molecular Dynamics

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2007-08-16

Total Pages: 472

ISBN-13: 3540680950

DOWNLOAD EBOOK

This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Molecular Modeling of Proteins

Molecular Modeling of Proteins

Author: Andreas Kukol

Publisher: Humana Press

Published: 2017-04-30

Total Pages: 474

ISBN-13: 9781493954919

DOWNLOAD EBOOK

Molecular Modeling of Proteins, Second Edition provides a theoretical background of various methods available and enables non-specialists to apply methods to their problems by including updated chapters and new material not covered in the first edition. This detailed volume opens by featuring classical and advanced simulation methods as well as methods to set-up complex systems such as lipid membranes and membrane proteins and continues with chapters devoted to the simulation and analysis of conformational changes of proteins, computational methods for protein structure prediction, usage of experimental data in combination with computational techniques, as well as protein-ligand interactions, which are relevant in the drug design process. Written for the highly successful Methods in Molecular Biology series, chapters include thorough introductions, step-by-step instructions and notes on troubleshooting and avoiding common pitfalls. Update-to-date and authoritative, Molecular Modeling of Proteins, Second Edition aims to aid researchers in the physical, chemical and biosciences interested in utilizing this powerful technology.


Computational Modeling And Simulations Of Biomolecular Systems

Computational Modeling And Simulations Of Biomolecular Systems

Author: Benoit Roux

Publisher: World Scientific

Published: 2021-08-23

Total Pages: 209

ISBN-13: 9811232776

DOWNLOAD EBOOK

This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).


Molecular Modeling Basics

Molecular Modeling Basics

Author: Jan H. Jensen

Publisher: CRC Press

Published: 2010-04-26

Total Pages: 192

ISBN-13: 1420075276

DOWNLOAD EBOOK

Molecular modeling is becoming an increasingly important part of chemical research and education as computers become faster and programs become easier to use. The results, however, have not become easier to understand. Addressing the need for a "workshop-oriented" book, Molecular Modeling Basics provides the fundamental theory needed to understand