"A new resource written specifically for the Foundations of Mathematics 9 (MFM 1P) course. The McGraw-Hill Ryerson Foundations of Mathematics 9 program is a carefully blended mix of print and digital resources designed to meet all teaching and learning needs."--Publ. website.
The new edition of Pearson Edexcel GCSE (9-1) Mathematics Higher Student Book 1 develops reasoning, fluency and problem-solving to boost students’ confidence and give them the best preparation for GCSE study. Purposefully updated based on feedback from thousands of teachers and students, as well as academic research and impact studies Bolsters preparation for GCSE with new questions that reflect the latest exams and a format that seamlessly aligns with our GCSE Maths courses Shown to help GCSE students master maths with confidence with a UK-specific approach that draws upon global best practices and cutting-edge research Tried-and-tested differentiation with a unique unit structure and improved pacing to support every student’s progress Extra skills-building support, problem-solving, and meaningful practice to consolidate learning and deepen understanding New additions to boost progression and post-GCSE study such as ‘Future skills questions’ and ‘Working towards A level’ features
Our brand-new resources are written specifically to tackle the demands of the GCSE (9-1) Maths. The Foundation Student Book is now endorsed for use with the Edexcel GCSE (9-1) Mathematics specification.
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.
Many pre-service teachers admit to feeling unsure about the mathematics they will have to teach in primary school. Others find it difficult to know how to apply the theories of teaching and learning they study in other courses to the teaching of mathematics. This book begins by outlining some of the key considerations of effective mathematics teaching and learning. These include understanding student motivation, classroom management, overcoming maths anxiety and developing a positive learning environment. The authors also introduce the curriculum and assessment processes, and explore the use of ICT in the maths classroom. Part B outlines in a straightforward and accessible style the mathematical content knowledge required of a primary teacher. The content extends beyond the primary level to Year 9 of the Australian Curriculum as, while primary teachers may not have to teach this content, knowing it is a key part of being a strong teacher and will assist pre-service teachers to meet the requirements of the LANTITE (the Literacy and Numeracy Test for Initial Teacher Education students). Featuring graphics and worked examples and using clear and friendly language throughout, this is the essential introduction for students wishing to begin teaching primary mathematics with confidence and enthusiasm. 'The writing style is clean and uncomplicated; exactly what my maths education students need. The blend of theories, curriculum, planning, assessment and mathematical content knowledge strikes the balance that is missing in many texts.' -- Dr Geoff Hilton, University of Queensland
The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the basic mathematics they require. It clearly and comprehensively covers much of the material that other textbooks tend to assume, assisting students in the transition to university-level mathematics.Expertly revised and updated, the chapters cover topics such as number systems, set and functions, differential calculus, matrices and integral calculus. Worked examples are provided and chapters conclude with exercises to which answers are given. For students seeking further challenges, problems intersperse the text, for which complete solutions are provided. Modifications in this third edition include a more informal approach to sequence limits and an increase in the number of worked examples, exercises and problems.The third edition of Fundamentals of university mathematics is an essential reference for first year university students in mathematics and related disciplines. It will also be of interest to professionals seeking a useful guide to mathematics at this level and capable pre-university students. - One volume, unified treatment of essential topics - Clearly and comprehensively covers material beyond standard textbooks - Worked examples, challenges and exercises throughout
The Foundations of Mathematics provides a careful introduction to proofs in mathematics, along with basic concepts of logic, set theory and other broadly used areas of mathematics. The concepts are introduced in a pedagogically effective manner without compromising mathematical accuracy and completeness. Thus, in Part I students explore concepts before they use them in proofs. The exercises range from reading comprehension questions and many standard exercises to proving more challenging statements, formulating conjectures and critiquing a variety of false and questionable proofs. The discussion of metamathematics, including Gödel’s Theorems, and philosophy of mathematics provides an unusual and valuable addition compared to other similar texts