Foundations of Combinatorics with Applications

Foundations of Combinatorics with Applications

Author: Edward A. Bender

Publisher: Courier Corporation

Published: 2013-01-18

Total Pages: 789

ISBN-13: 0486151506

DOWNLOAD EBOOK

This introduction to combinatorics, the foundation of the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. The four-part treatment begins with a section on counting and listing that covers basic counting, functions, decision trees, and sieving methods. The following section addresses fundamental concepts in graph theory and a sampler of graph topics. The third part examines a variety of applications relevant to computer science and mathematics, including induction and recursion, sorting theory, and rooted plane trees. The final section, on generating functions, offers students a powerful tool for studying counting problems. Numerous exercises appear throughout the text, along with notes and references. The text concludes with solutions to odd-numbered exercises and to all appendix exercises.


Foundations of Combinatorial Topology

Foundations of Combinatorial Topology

Author: L. S. Pontryagin

Publisher: Courier Corporation

Published: 2015-05-20

Total Pages: 112

ISBN-13: 0486406857

DOWNLOAD EBOOK

Concise, rigorous introduction to homology theory features applications to dimension theory and fixed-point theorems. Lucid coverage of the field includes examinations of complexes and their Betti groups, invariance of the Betti groups, and continuous mappings and fixed points. Proofs are presented in a complete and careful manner. A beneficial text for a graduate-level course, "this little book is an extremely valuable addition to the literature of algebraic topology." — The Mathematical Gazette.


Notes on Introductory Combinatorics

Notes on Introductory Combinatorics

Author: George Polya

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 202

ISBN-13: 1475711018

DOWNLOAD EBOOK

In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting

Author: Bruce E. Sagan

Publisher: American Mathematical Soc.

Published: 2020-10-16

Total Pages: 328

ISBN-13: 1470460327

DOWNLOAD EBOOK

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.


Combinatorics for Computer Science

Combinatorics for Computer Science

Author: Stanley Gill Williamson

Publisher: Courier Corporation

Published: 2002-01-01

Total Pages: 548

ISBN-13: 9780486420769

DOWNLOAD EBOOK

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.


Combinatorics and Finite Fields

Combinatorics and Finite Fields

Author: Kai-Uwe Schmidt

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 459

ISBN-13: 3110641968

DOWNLOAD EBOOK

Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.


Lessons in Enumerative Combinatorics

Lessons in Enumerative Combinatorics

Author: Ömer Eğecioğlu

Publisher: Springer Nature

Published: 2021-05-13

Total Pages: 479

ISBN-13: 3030712508

DOWNLOAD EBOOK

This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.