Foundations of Applied Mathematics, Volume I

Foundations of Applied Mathematics, Volume I

Author: Jeffrey Humpherys

Publisher: SIAM

Published: 2017-07-07

Total Pages: 710

ISBN-13: 1611974895

DOWNLOAD EBOOK

This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?


Foundations of Applied Mathematics

Foundations of Applied Mathematics

Author: Michael D. Greenberg

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 660

ISBN-13: 0486492796

DOWNLOAD EBOOK

"A longtime classic text in applied mathematics, this volume also serves as a reference for undergraduate and graduate students of engineering. Topics include real variable theory, complex variables, linear analysis, partial and ordinary differential equations, and other subjects. Answers to selected exercises are provided, along with Fourier and Laplace transformation tables and useful formulas. 1978 edition"--


Foundations of Applied Mathematics, Volume 2

Foundations of Applied Mathematics, Volume 2

Author: Jeffrey Humpherys

Publisher: SIAM

Published: 2020-03-10

Total Pages: 807

ISBN-13: 1611976065

DOWNLOAD EBOOK

In this second book of what will be a four-volume series, the authors present, in a mathematically rigorous way, the essential foundations of both the theory and practice of algorithms, approximation, and optimization—essential topics in modern applied and computational mathematics. This material is the introductory framework upon which algorithm analysis, optimization, probability, statistics, machine learning, and control theory are built. This text gives a unified treatment of several topics that do not usually appear together: the theory and analysis of algorithms for mathematicians and data science students; probability and its applications; the theory and applications of approximation, including Fourier series, wavelets, and polynomial approximation; and the theory and practice of optimization, including dynamic optimization. When used in concert with the free supplemental lab materials, Foundations of Applied Mathematics, Volume 2: Algorithms, Approximation, Optimization teaches not only the theory but also the computational practice of modern mathematical methods. Exercises and examples build upon each other in a way that continually reinforces previous ideas, allowing students to retain learned concepts while achieving a greater depth. The mathematically rigorous lab content guides students to technical proficiency and answers the age-old question “When am I going to use this?” This textbook is geared toward advanced undergraduate and beginning graduate students in mathematics, data science, and machine learning.


Introduction to the Foundations of Applied Mathematics

Introduction to the Foundations of Applied Mathematics

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

Published: 2009-06-18

Total Pages: 477

ISBN-13: 0387877657

DOWNLOAD EBOOK

FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.


Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience

Author: G. Bard Ermentrout

Publisher: Springer Science & Business Media

Published: 2010-07-01

Total Pages: 434

ISBN-13: 0387877088

DOWNLOAD EBOOK

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.


Principles and Techniques of Applied Mathematics

Principles and Techniques of Applied Mathematics

Author: Bernard Friedman

Publisher: Courier Dover Publications

Published: 1990-01-01

Total Pages: 338

ISBN-13: 0486664449

DOWNLOAD EBOOK

Stimulating, thought-provoking study shows how abstract methods of pure mathematics can be used to systematize problem-solving techniques in applied mathematics. Topics include methods for solving integral equations, finding Green’s function for ordinary or partial differential equations, and for finding the spectral representation of ordinary differential operators.


Foundations of Analysis

Foundations of Analysis

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 411

ISBN-13: 0821889842

DOWNLOAD EBOOK

Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.


Applied Mathematics for Engineers and Physicists

Applied Mathematics for Engineers and Physicists

Author: Louis A. Pipes

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 1043

ISBN-13: 0486794997

DOWNLOAD EBOOK

Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.


Foundations of Discrete Mathematics

Foundations of Discrete Mathematics

Author: K. D. Joshi

Publisher: New Age International

Published: 1989

Total Pages: 768

ISBN-13: 9788122401202

DOWNLOAD EBOOK

This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.


Mathematical Foundations of Thermodynamics

Mathematical Foundations of Thermodynamics

Author: R. Giles

Publisher: Elsevier

Published: 2016-01-22

Total Pages: 252

ISBN-13: 1483184919

DOWNLOAD EBOOK

Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodynamics, such as physics, engineering, and chemistry.