Foundations of Higher Mathematics

Foundations of Higher Mathematics

Author: Daniel M. Fendel

Publisher: Addison Wesley

Published: 1990

Total Pages: 488

ISBN-13:

DOWNLOAD EBOOK

Foundations of Higher Mathematics: Exploration and Proof is the ideal text to bridge the crucial gap between the standard calculus sequence and upper division mathematics courses. The book takes a fresh approach to the subject: it asks students to explore mathematical principles on their own and challenges them to think like mathematicians. Two unique features-an exploration approach to mathematics and an intuitive and integrated presentation of logic based on predicate calculus-distinguish the book from the competition. Both features enable students to own the mathematics they're working on. As a result, your students develop a stronger motivation to tackle upper-level courses and gain a deeper understanding of concepts presented.


Transition to Higher Mathematics

Transition to Higher Mathematics

Author: Bob A. Dumas

Publisher: McGraw-Hill Education

Published: 2007

Total Pages: 0

ISBN-13: 9780071106474

DOWNLOAD EBOOK

This book is written for students who have taken calculus and want to learn what "real mathematics" is.


Practical Foundations of Mathematics

Practical Foundations of Mathematics

Author: Paul Taylor

Publisher: Cambridge University Press

Published: 1999-05-13

Total Pages: 590

ISBN-13: 9780521631075

DOWNLOAD EBOOK

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.


Bridge to Higher Mathematics

Bridge to Higher Mathematics

Author: Sam Vandervelde

Publisher: Lulu.com

Published: 2010

Total Pages: 258

ISBN-13: 055750337X

DOWNLOAD EBOOK

This engaging math textbook is designed to equip students who have completed a standard high school math curriculum with the tools and techniques that they will need to succeed in upper level math courses. Topics covered include logic and set theory, proof techniques, number theory, counting, induction, relations, functions, and cardinality.


New Foundations in Mathematics

New Foundations in Mathematics

Author: Garret Sobczyk

Publisher: Springer Science & Business Media

Published: 2012-10-26

Total Pages: 373

ISBN-13: 0817683852

DOWNLOAD EBOOK

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.


A Foundation Course in Mathematics

A Foundation Course in Mathematics

Author: Ajit Kumar

Publisher:

Published: 2018-04-30

Total Pages: 148

ISBN-13: 9781783323586

DOWNLOAD EBOOK

Written in a conversational style to impart critical and analytical thinking which will be beneficial for students of any discipline. It also gives emphasis on problem solving and proof writing skills, key aspects of learning mathematics.


The Foundations of Mathematics

The Foundations of Mathematics

Author: Kenneth Kunen

Publisher:

Published: 2009

Total Pages: 251

ISBN-13: 9781904987147

DOWNLOAD EBOOK

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.


Foundations of Analysis

Foundations of Analysis

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 411

ISBN-13: 0821889842

DOWNLOAD EBOOK

Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.


The Foundations of Mathematics

The Foundations of Mathematics

Author: Thomas Q. Sibley

Publisher: John Wiley & Sons

Published: 2008-04-07

Total Pages: 817

ISBN-13: 0470085010

DOWNLOAD EBOOK

The Foundations of Mathematics provides a careful introduction to proofs in mathematics, along with basic concepts of logic, set theory and other broadly used areas of mathematics. The concepts are introduced in a pedagogically effective manner without compromising mathematical accuracy and completeness. Thus, in Part I students explore concepts before they use them in proofs. The exercises range from reading comprehension questions and many standard exercises to proving more challenging statements, formulating conjectures and critiquing a variety of false and questionable proofs. The discussion of metamathematics, including Gödel’s Theorems, and philosophy of mathematics provides an unusual and valuable addition compared to other similar texts