This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
For junior/senior undergraduates in a variety of fields such as economics, business administration, applied mathematics and statistics, and for graduate students in quantitative masters programs such as MBA and MA/MS in economics. A student-friendly approach to understanding forecasting. Knowledge of forecasting methods is among the most demanded qualifications for professional economists, and business people working in either the private or public sectors of the economy. The general aim of this textbook is to carefully develop sophisticated professionals, who are able to critically analyze time series data and forecasting reports because they have experienced the merits and shortcomings of forecasting practice.
A simple criterion based on the properties of the forecast error is presented to evaluate the accuracy of forecasts. The efficiency conditions of an optimization problem are used to show that under rational expectations the standard statistical conditions are necessary, but not sufficient to ensure efficiency. This criterion is used to examine the accuracy of the World Economic Outlook projections of growth and inflation for the seven major industrial countries. Time series models are then estimated and the efficiency of the World Economic Outlook projections relative to a benchmark time series model is examined. A number of empirical tests suggest that the year ahead projections of growth and inflation in the World Economic Outlook are unbiased after 1982.
A comprehensive collection of the field's most provocative, influential new work Business Forecasting compiles some of the field's important and influential literature into a single, comprehensive reference for forecast modeling and process improvement. It is packed with provocative ideas from forecasting researchers and practitioners, on topics including accuracy metrics, benchmarking, modeling of problem data, and overcoming dysfunctional behaviors. Its coverage includes often-overlooked issues at the forefront of research, such as uncertainty, randomness, and forecastability, as well as emerging areas like data mining for forecasting. The articles present critical analysis of current practices and consideration of new ideas. With a mix of formal, rigorous pieces and brief introductory chapters, the book provides practitioners with a comprehensive examination of the current state of the business forecasting field. Forecasting performance is ultimately limited by the 'forecastability' of the data. Yet failing to recognize this, many organizations continue to squander resources pursuing unachievable levels of accuracy. This book provides a wealth of ideas for improving all aspects of the process, including the avoidance of wasted efforts that fail to improve (or even harm) forecast accuracy. Analyzes the most prominent issues in business forecasting Investigates emerging approaches and new methods of analysis Combines forecasts to improve accuracy Utilizes Forecast Value Added to identify process inefficiency The business environment is evolving, and forecasting methods must evolve alongside it. This compilation delivers an array of new tools and research that can enable more efficient processes and more accurate results. Business Forecasting provides an expert's-eye view of the field's latest developments to help you achieve your desired business outcomes.
INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” —Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” —Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” —Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute.
Section headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.
Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.
Forecast Verification: A Practioner's Guide in Atmospheric Science, 2nd Edition provides an indispensible guide to this area of active research by combining depth of information with a range of topics to appeal both to professional practitioners and researchers and postgraduates. The editors have succeeded in presenting chapters by a variety of the leading experts in the field while still retaining a cohesive and highly accessible style. The book balances explanations of concepts with clear and useful discussion of the main application areas. Reviews of first edition: "This book will provide a good reference, and I recommend it especially for developers and evaluators of statistical forecast systems." (Bulletin of the American Meteorological Society; April 2004) "...a good mixture of theory and practical applications...well organized and clearly written..." (Royal Statistical Society, Vol.168, No.1, January 2005) NEW to the second edition: Completely updated chapter on the Verification of Spatial Forecasts taking account of the wealth of new research in the area New separate chapters on Probability Forecasts and Ensemble Forecasts Includes new chapter on Forecasts of Extreme Events and Warnings Includes new chapter on Seasonal and Climate Forecasts Includes new Appendix on Verification Software Cover image credit: The triangle of barplots shows a novel use of colour for visualizing probability forecasts of ternary categories – see Fig 6b of Jupp et al. 2011, On the visualisation, verification and recalibration of ternary probabilistic forecasts, Phil. Trans. Roy. Soc. (in press).
This book surveys what executives who make decisions based on forecasts and professionals responsible for forecasts should know about forecasting. It discusses how individuals and firms should think about forecasting and guidelines for good practices. It introduces readers to the subject of time series, presents basic and advanced forecasting models, from exponential smoothing across ARIMA to modern Machine Learning methods, and examines human judgment's role in interpreting numbers and identifying forecasting errors and how it should be integrated into organizations. This is a great book to start learning about forecasting if you are new to the area or have some preliminary exposure to forecasting. Whether you are a practitioner, either in a role managing a forecasting team or at operationally involved in demand planning, a software designer, a student or an academic teaching business analytics, operational research, or operations management courses, the book can inspire you to rethink demand forecasting. No prior knowledge of higher mathematics, statistics, operations research, or forecasting is assumed in this book. It is designed to serve as a first introduction to the non-expert who needs to be familiar with the broad outlines of forecasting without specializing in it. This may include a manager overseeing a forecasting group, or a student enrolled in an MBA program, an executive education course, or programs not specialising in analytics. Worked examples accompany the key formulae to show how they can be implemented. Key Features: While there are many books about forecasting technique, very few are published targeting managers. This book fills that gap. It provides the right balance between explaining the importance of demand forecasting and providing enough information to allow a busy manager to read a book and learn something that can be directly used in practice. It provides key takeaways that will help managers to make difference in their companies.