A one-stop practical guide to foraminifera with numerous case studies demonstrating their applications, for graduate students, micropalaeontologists and industry professionals.
Foraminiferal Micropaleontology for Understanding Earth's History incorporates new findings on taxonomy, classification and biostratigraphy of foraminifera. Foraminifera offer the best geochemical proxies for paleoclimate and paleoenvironment interpretation. The study of foraminifera was promoted by oil exploration due to its exceptional use in subsurface stratigraphy. A rapid technological development in the past 20 years in the field of imaging microfossils and in geochemical microanalysis have added novel information about foraminifera. Foraminiferal Micropaleontology for Understanding Earth's History builds an understanding of biology, morphology and classification of foraminifera for its varied applications. In the past two decades, a phenomenal growth has occurred in geochemical proxies in shells of foraminifera, and as a result, crucial information about past climate of the earth is achieved. Foraminifera is the most extensively used marine microfossils in deep-time reconstruction of the earth history. Its key applications are in paleoenvironment and paleoclimate interpretation, paleoceanography, and biostratigraphy to continuously improve the Geologic Time Scale. - Provides an overview of the Earth history as witnessed and evidenced by foraminifera - Discusses a variety of geochemical proxies used in reconstruction of environment, climate and paleobiology of foraminifera - Presents a new insight into the morphology and classification of foraminifera by modern tools of x-ray microscopy, quantitative methods, and molecular research
Microfossils are ideally suited to environmental studies because their short generation times allow them to respond rapidly to environmental change. This book represents an assessment of the progress made in environmental micropalaeontology and sets out future research directions. The taxa studied are mainly foraminifera, but include arcellaceans, diatoms, dinoflagellates, and ostracodes. The papers themselves range from reviews of applications of particular taxa to specific case studies.
An up-to-date atlas of an important fossil and living group, with the Natural History Museum. Deep-sea benthic foraminifera have played a central role in biostratigraphic, paleoecological, and paleoceanographical research for over a century. These single–celled marine protists are important because of their geographic ubiquity, distinction morphologies and rapid evolutionary rates, their abundance and diversity deep–sea sediments, and because of their utility as indicators of environmental conditions both at and below the sediment–water interface. In addition, stable isotopic data obtained from deep–sea benthic foraminiferal tests provide paleoceanographers with environmental information that is proving to be of major significance in studies of global climatic change. This work collects together, for the first time, new morphological descriptions, taxonomic placements, stratigraphic occurrence data, geographical distribution summaries, and palaeoecological information, along with state-of-the-art colour photomicrographs (most taken in reflected light, just as you would see them using light microscopy), of 300 common deep-sea benthic foraminifera species spanning the interval from Jurassic - Recent. This volume is intended as a reference and research resource for post-graduate students in micropalaeontology, geological professionals (stratigraphers, paleontologists, paleoecologists, palaeoceanographers), taxonomists, and evolutionary (paleo)biologists.
Palaeontology has developed from a descriptive science to an analytical science used to interpret relationships between earth and life history. This book highlights its key role in the study of the evolving earth, life history and environmental processes. After an introduction to fossils and their classification, each of the principal fossil groups are studied in detail, covering their biology, morphology, classification, palaeobiology and biostratigraphy. The latter sections focus on the applications of fossils in the interpretation of earth and life processes and environments.
Foraminiferal cultures now serve as tools for researching biological, environmental, and geological topics. However, the biological backgrounds, in particular the natural histories of foraminifera, largely remain unclear. It is also true that the different techniques used in different subdisciplines are a setback to fully understanding the subject. Taken together, these factors prevent progress in experimental approaches to foraminiferal studies. This book aims to share and exchange knowledge between researchers from different subdisciplines, and the book should interest not only foraminiferal researchers but also scientists who are working with marine organisms to explore questions in relation to biology, geology, and oceanography.
Emphasizes the methodological approaches being used for environmental applications of foraminifera and thecamoebians. Its main audience will include researchers and consultants, but it will also serve as a supplementary text for graduate students in courses that deal with environmental monitoring and assessment.
This is an important and authoritative review of foraminiferal ecology, the first for over a decade. Professor Murray relates ecological data on living forms of foraminifera to the palaeoecology of fossil species, and defines in detail areas of global distribution.
This book provides a comprehensive overview of the taxonomy, biology, sedimentation, and carbonate geochemistry of modern species. Students, early career and advanced scientists alike will profit from a broad synthesis of the current understanding of planktic foraminifers as an ecological indicator, biogeochemical factories, and proxies in paleoceanography. The classification of modern species is amply illustrated with electron and light microscope images of morphotypes, addresses the state-of-the-art of molecular genetics of species, and provides a detailed guide for any laboratory analyses. The biology of planktic foraminifers is extensively discussed in chapters dedicated to the cellular ultrastructure, nutrition, symbionts, reproduction, ontogeny, and test architecture. Building on the biological prerequisites, the distribution of planktic foraminifers is discussed at regional to global scale. The geochemistry and sedimentation of tests are considered in relation to the ecology of the living animal. In the final chapter, which examines the most common methods in planktic foraminifer research, hands-on information is provided on sampling, processing and analyzing samples in the laboratory, as well as selected established methods for data interpretation. The various topics discussed in this book are aimed at the application of planktic foraminifers as sensitive indicators of the changing climate and marine environment.