The field of mechatronics integrates modern engineering science and technologies with new ways of thinking, enhancing the design of products and manufacturing processes. This synergy enables the creation and evolution of new intelligent human-oriented machines. The Handbook of Research on Advancements in Robotics and Mechatronics presents new findings, practices, technological innovations, and theoretical perspectives on the the latest advancements in the field of mechanical engineering. This book is of great use to engineers and scientists, students, researchers, and practitioners looking to develop autonomous and smart products and systems for meeting todays challenges.
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
Studies on robotics applications have grown substantially in recent years, with swarm robotics being a relatively new area of research. Inspired by studies in swarm intelligence and robotics, swarm robotics facilitates interactions between robots as well as their interactions with the environment. The Handbook of Research on Design, Control, and Modeling of Swarm Robotics is a collection of the most important research achievements in swarm robotics thus far, covering the growing areas of design, control, and modeling of swarm robotics. This handbook serves as an essential resource for researchers, engineers, graduates, and senior undergraduates with interests in swarm robotics and its applications.
ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the eighteenth edition of "Robotics Research" ISRR17, offering a collection of a broad range of topics in robotics. This symposium took place in Puerto Varas, Chile from December 11th to December 14th, 2017. The content of the contributions provides a wide coverage of the current state of robotics research, the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.
At the dawn of the new millennium, robotics is undergoing a major transfor- tion in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into the challenges of unstructured environments. Inter- ting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. The goal of this new series of Springer Tracts in Advanced Robotics is to bring,inatimelyfashion,thelatestadvancesanddevelopmentsinroboticsonthe basisoftheirsigni?canceandquality.Itisourhopethatthegreaterdissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld. As one of robotics pioneering symposia, ISRR, the "International Sym- sium on Robotics Research," has established over the past two decades some of the ?eld’s most fundamental and lasting contributions.With the launching of STAR, this and other thematic symposia devoted to excellence in robotics ?nd an important platform for closer links and extended reach within the research community. The Tenth edition of "Robotics Research" edited by Raymond Jarvis and AlexZelinskyoffersinits11-partvolumeacollectionofabroadrangeoftopics in robotics. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new areas of applications.
ISRR, the "International Symposium on Robotics Research", is one of robotics’ pioneering symposia, which has established some of the field's most fundamental and lasting contributions over the past two decades. This book presents the results of the eleventh edition of "Robotics Research" ISRR03, offering a broad range of topics in robotics. The contributions provide a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope, and define the state of the art of robotics and its future direction.
This volume contains 50 papers presented at the 12th International Symposium of Robotics Research, which took place October 2005 in San Francisco, CA. Coverage includes: physical human-robot interaction, humanoids, mechanisms and design, simultaneous localization and mapping, field robots, robotic vision, robot design and control, underwater robotics, learning and adaptive behavior, networked robotics, and interfaces and interaction.
Living with Robots: Emerging Issues on the Psychological and Social Implications of Robotics focuses on the issues that come to bear when humans interact and collaborate with robots. The book dives deeply into critical factors that impact how individuals interact with robots at home, work and play. It includes topics ranging from robot anthropomorphic design, degree of autonomy, trust, individual differences and machine learning. While other books focus on engineering capabilities or the highly conceptual, philosophical issues of human-robot interaction, this resource tackles the human elements at play in these interactions, which are essential if humans and robots are to coexist and collaborate effectively. Authored by key psychology robotics researchers, the book limits its focus to specifically those robots who are intended to interact with people, including technology such as drones, self-driving cars, and humanoid robots. Forward-looking, the book examines robots not as the novelty they used to be, but rather the practical idea of robots participating in our everyday lives.
This volume presents a collection of papers presented at the 14th International Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the International Foundation of Robotic Research (IFRR) and its 14th edition took place in Lucerne, Switzerland, from August 31st to September 3rd, 2009. As for the previous symposia, ISRR 2009 followed up on the successful concept of a mixture of invited contributions and open submissions. Half of the 48 presentations were therefore invited contributions from outstanding researchers selected by the IFRR officers, and half were chosen among the 66 submissions after peer review. This selection process resulted in a truly excellent technical program which, we believe, featured some of the very best of robotic research. Out of the 48 presentations, the 42 papers which were finally submitted for publication are organized in 8 sections that encompass the major research orientations in robotics: Navigation, Control & Planning, Human-Robot Interaction, Manipulation and Humanoids, Learning, Mapping, Multi-Robot Systems, and Micro-Robotics. They represent an excellent snapshot of cutting-edge research in robotics and outline future directions.