Optimization of combustion processes in automotive engines is a key factor in reducing fuel consumption. This book, written by eminent university and industry researchers, investigates and describes flow and combustion processes in diesel and gasoline engines.
Optimization of combustion processes in automotive engines is a key factor in reducing fuel consumption. This book, written by eminent university and industry researchers, investigates and describes flow and combustion processes in diesel and gasoline engines.
Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.
This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.
Sir Diarmuid Downs, CBE, FEng, FRS Engineering is about designing and making marketable artefacts. The element of design is what principally distinguishes engineering from science. The engineer is a creator. He brings together knowledge and experience from a variety of sources to serve his ends, producing goods of value to the individual and to the community. An important source of information on which the engineer draws is the work of the scientist or the scientifically minded engineer. The pure scientist is concerned with knowledge for its own sake and receives his greatest satisfaction if his experimental observations fit into an aesthetically satisfying theory. The applied scientist or engineer is also concerned with theory, but as a means to an end. He tries to devise a theory which will encompass the known experimental facts, both because an all embracing theory somehow serves as an extra validation of the facts and because the theory provides us with new leads to further fruitful experimental investigation. I have laboured these perhaps rather obvious points because they are well exemplified in this present book. The first internal combustion engines, produced just over one hundred years ago, were very simple, the design being based on very limited experimental information. The current engines are extremely complex and, while the basic design of cylinder, piston, connecting rod and crankshaft has changed but little, the overall performance in respect of specific power, fuel economy, pollution, noise and cost has been absolutely transformed.
Internal Combustion Engines covers the trends in passenger car engine design and technology. This book is organized into seven chapters that focus on the importance of the in-cylinder fluid mechanics as the controlling parameter of combustion. After briefly dealing with a historical overview of the various phases of automotive industry, the book goes on discussing the underlying principles of operation of the gasoline, diesel, and turbocharged engines; the consequences in terms of performance, economy, and pollutant emission; and of the means available for further development and improvement. A chapter focuses on the automotive fuels of the various types of engines. Recent developments in both the experimental and computational fronts and the application of available research methods on engine design, as well as the trends in engine technology, are presented in the concluding chapters. This book is an ideal compact reference for automotive researchers and engineers and graduate engineering students.
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
This book deals with in-cylinder pressure measurement and its post-processing for combustion quality analysis of conventional and advanced reciprocating engines. It offers insight into knocking and combustion stability analysis techniques and algorithms in SI, CI, and LTC engines, and places special emphasis on the digital signal processing of in-cylinder pressure signal for online and offline applications. The text gives a detailed description on sensors for combustion measurement, data acquisition, and methods for estimation of performance and combustion parameters. The information provided in this book enhances readers’ basic knowledge of engine combustion diagnostics and serves as a comprehensive, ready reference for a broad audience including graduate students, course instructors, researchers, and practicing engineers in the automotive, oil and other industries concerned with internal combustion engines.
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Much has been said and written about the abilities of modern instrumentation to help solve problems of combustion in engines. In the main, however, the design and fabr ication of combustion chambers continues to be based on extrapolation of exper ience gained from use and rig tests, with little input from advanced techniques such as those based on optical diagnotics. At the same time, it has become increasingly difficult to design better combustion chambers without knowledge of the relevant flow processes. Thus, the future must involve improved understanding which, in turn, will require detailed measurements of velocity, temperature and concentration. The need to narrow the gap between current industrial practice and the acquisition and implementation of improved techniques motivated the organization of the Advanced Study Institute upon which this volume is based. This Institute on Instrumentation for Combustion and Flow in Engines was arranged to display the needs of industry and the possibilities made available by modern instrumentation and, at the same time, to make clear the relative advantages of optical and probe techniques. Held at Vimeiro during the period from 13 to 26 September, 1987, the Institute was attended by 120 participants and 16 invited lecturers.