Floquet Theory for Partial Differential Equations

Floquet Theory for Partial Differential Equations

Author: P.A. Kuchment

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 363

ISBN-13: 3034885733

DOWNLOAD EBOOK

Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].


Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications

Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications

Author: Janusz Mierczynski

Publisher: CRC Press

Published: 2008-03-24

Total Pages: 333

ISBN-13: 1584888962

DOWNLOAD EBOOK

Providing a basic tool for studying nonlinear problems, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications focuses on the principal spectral theory for general time-dependent and random parabolic equations and systems. The text contains many new results and considers existing results from a fresh perspective.


Handbook of Dynamical Systems

Handbook of Dynamical Systems

Author: B. Fiedler

Publisher: Gulf Professional Publishing

Published: 2002-02-21

Total Pages: 1099

ISBN-13: 0080532845

DOWNLOAD EBOOK

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.


Almost Periodic Solutions of Differential Equations in Banach Spaces

Almost Periodic Solutions of Differential Equations in Banach Spaces

Author: Yoshiyuki Hino

Publisher: CRC Press

Published: 2001-10-25

Total Pages: 276

ISBN-13: 9780415272667

DOWNLOAD EBOOK

This monograph presents recent developments in spectral conditions for the existence of periodic and almost periodic solutions of inhomogenous equations in Banach Spaces. Many of the results represent significant advances in this area. In particular, the authors systematically present a new approach based on the so-called evolution semigroups with an original decomposition technique. The book also extends classical techniques, such as fixed points and stability methods, to abstract functional differential equations with applications to partial functional differential equations. Almost Periodic Solutions of Differential Equations in Banach Spaces will appeal to anyone working in mathematical analysis.


Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations

Author: George R. Sell

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 680

ISBN-13: 1475750374

DOWNLOAD EBOOK

The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.


Sturm-Liouville Theory

Sturm-Liouville Theory

Author: Werner O. Amrein

Publisher: Springer Science & Business Media

Published: 2005-05-19

Total Pages: 364

ISBN-13: 9783764370664

DOWNLOAD EBOOK

This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.


Matrix and Operator Valued Functions

Matrix and Operator Valued Functions

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 241

ISBN-13: 3034885326

DOWNLOAD EBOOK

A collection of papers on different aspects of operator theory and complex analysis, covering the recent achievements of the Odessa-Kharkov school, where Potapov was very active. The book appeals to a wide group of mathematicians and engineers, and much of the material can be used for advanced courses and seminars.


Mathematical Problems and Methods of Hydrodynamic Weather Forecasting

Mathematical Problems and Methods of Hydrodynamic Weather Forecasting

Author: Vladimir Gordin

Publisher: CRC Press

Published: 2000-09-20

Total Pages: 843

ISBN-13: 1482287412

DOWNLOAD EBOOK

The material provides an historical background to forecasting developments as well as introducing recent advances. The book will be of interest to both mathematicians and physicians, the topics covered include equations of dynamical meteorology, first integrals, non-linear stability, well-posedness of boundary problems, non-smooth solutions, parame