This seventh edition of Fitzgerald and Kingsley's Electric Machinery by Stephen Umans was developed recognizing the strength of this classic text since its first edition has been the emphasis on building an understanding of the fundamental physical principles underlying the performance of electric machines. Much has changed since the publication of the first edition, yet the basic physical principles remain the same, and this seventh edition is intended to retain the focus on these principles in the context of today's technology.
This seventh edition of Fitzgerald and Kingsley's Electric Machinery by Stephen Umans was developed recognizing the strength of this classic text since its first edition has been the emphasis on building an understanding of the fundamental physical principles underlying the performance of electric machines. Much has changed since the publication of the first edition, yet the basic physical principles remain the same, and this seventh edition is intended to retain the focus on these principles in the context of today's technology.
Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.
Electric Machinery Fundamentals continues to be a best-selling machinery text due to its accessible, student-friendly coverage of the important topics in the field. Chapman’s clear writing persists in being one of the top features of the book. Although not a book on MATLAB, the use of MATLAB has been enhanced in the fourth edition. Additionally, many new problems have been added and remaining ones modified. Electric Machinery Fundamentals is also accompanied by a website the provides solutions for instructors, as well as source code, MATLAB tools, and links to important sites for students.
This complete new and innovative textbooks provides a simple and easy concepts to learn about Electrical Machine. This books will be extremely helpful for undergraduate and postgraduate students in engineering. This book consists exercises also useful for GATE, NET, Civil Services, PSUs and other competitive examinations.
This is a reference source for practising engineers specializing in electric power engineering and industrial electronics. It begins with the basic dynamic models of induction motors and progresses to low- and high-performance drive systems.
This book is intended to be a textbook for undergraduate students studying electrical and electronic engineering in universities and colleges. Therefore, the level and amount of the knowledge to be transferred to the reader is kept to as much as what can be taught in one academic semester of a university or a college course. Although the subject is rather classical and somehow well established in some respects, it is vast and can be difficult to grasp if unnecessary details are not avoided. This book is aimed to give the reader just what is necessary - with plenty of short and easily understandable examples and drawings, figures, and tables. A course on electromechanical energy conversion is a necessity in all universities and colleges entitled to grant a license for electrical engineering. This book is aimed at meeting the requirements of this essential subject by providing necessary information to complete the course. A compact chapter is included with figures and tables on energy and the restraints on its production brought about by global climate change. A new approach has been tried for some of the classic subjects including magnetic circuits and electrical machines together with today’s much-used motors.
This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations. Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight. With classroom-tested material, this book also presents: the principles of electromechanical energy conversion and magnetic circuits; synchronous machines - the most important generators of electric power; power electronics; induction and direct current electric motors. Homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors is available. A useful Appendix contains a review of elementary network theory. For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics. www.wiley.com/go/kirtley_electric
The two major broad applications of electrical energy are information processing and energy processing. Hence, it is no wonder that electric machines have occupied a large and revered space in the field of electrical engineering. Such an important topic requires a careful approach, and Charles A. Gross' Electric Machines offers the most balanced, application-oriented, and modern perspective on electromagnetic machines available. Written in a style that is both accessible and authoritative, this book explores all aspects of electromagnetic-mechanical (EM) machines. Rather than viewing the EM machine in isolation, the author treats the machine as part of an integrated system of source, controller, motor, and load. The discussion progresses systematically through basic machine physics and principles of operation to real-world applications and relevant control issues for each type of machine presented. Coverage ranges from DC, induction, and synchronous machines to specialized machines such as transformers, translational machines, and microelectromechanical systems (MEMS). Stimulating example applications include electric vehicles, wind energy, and vertical transportation. Numerous example problems illustrate and reinforce the concepts discussed. Along with appendices filled with unit conversions and background material, Electric Machines is a succinct, in-depth, and complete guide to understanding electric machines for novel applications.