Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models

Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models

Author: Andrey Itkin

Publisher: World Scientific

Published: 2020-01-22

Total Pages: 205

ISBN-13: 9811212783

DOWNLOAD EBOOK

The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.


Generalized Integral Transforms In Mathematical Finance

Generalized Integral Transforms In Mathematical Finance

Author: Andrey Itkin

Publisher: World Scientific

Published: 2021-10-12

Total Pages: 508

ISBN-13: 9811231753

DOWNLOAD EBOOK

This book describes several techniques, first invented in physics for solving problems of heat and mass transfer, and applies them to various problems of mathematical finance defined in domains with moving boundaries. These problems include: (a) semi-closed form pricing of options in the one-factor models with time-dependent barriers (Bachelier, Hull-White, CIR, CEV); (b) analyzing an interconnected banking system in the structural credit risk model with default contagion; (c) finding first hitting time density for a reducible diffusion process; (d) describing the exercise boundary of American options; (e) calculating default boundary for the structured default problem; (f) deriving a semi-closed form solution for optimal mean-reverting trading strategies; to mention but some.The main methods used in this book are generalized integral transforms and heat potentials. To find a semi-closed form solution, we need to solve a linear or nonlinear Volterra equation of the second kind and then represent the option price as a one-dimensional integral. Our analysis shows that these methods are computationally more efficient than the corresponding finite-difference methods for the backward or forward Kolmogorov PDEs (partial differential equations) while providing better accuracy and stability.We extend a large number of known results by either providing solutions on complementary or extended domains where the solution is not known yet or modifying these techniques and applying them to new types of equations, such as the Bessel process. The book contains several novel results broadly applicable in physics, mathematics, and engineering.


Semiparametric Modeling of Implied Volatility

Semiparametric Modeling of Implied Volatility

Author: Matthias R. Fengler

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 232

ISBN-13: 3540305912

DOWNLOAD EBOOK

This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.


The Heston Model and its Extensions in Matlab and C#

The Heston Model and its Extensions in Matlab and C#

Author: Fabrice D. Rouah

Publisher: John Wiley & Sons

Published: 2013-08-01

Total Pages: 437

ISBN-13: 1118695178

DOWNLOAD EBOOK

Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.


Option Pricing Models and Volatility Using Excel-VBA

Option Pricing Models and Volatility Using Excel-VBA

Author: Fabrice D. Rouah

Publisher: John Wiley & Sons

Published: 2012-06-15

Total Pages: 456

ISBN-13: 1118429206

DOWNLOAD EBOOK

This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland


The Black-Scholes Model

The Black-Scholes Model

Author: Marek Capiński

Publisher: Cambridge University Press

Published: 2012-09-13

Total Pages: 179

ISBN-13: 1107001692

DOWNLOAD EBOOK

Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.


FX Barrier Options

FX Barrier Options

Author: Zareer Dadachanji

Publisher: Palgrave Macmillan

Published: 2015-09-29

Total Pages: 0

ISBN-13: 9781137462749

DOWNLOAD EBOOK

Barrier options are a class of highly path-dependent exotic options which present particular challenges to practitioners in all areas of the financial industry. They are traded heavily as stand-alone contracts in the Foreign Exchange (FX) options market, their trading volume being second only to that of vanilla options. The FX options industry has correspondingly shown great innovation in this class of products and in the models that are used to value and risk-manage them. FX structured products commonly include barrier features, and in order to analyse the effects that these features have on the overall structured product, it is essential first to understand how individual barrier options work and behave. FX Barrier Options takes a quantitative approach to barrier options in FX environments. Its primary perspectives are those of quantitative analysts, both in the front office and in control functions. It presents and explains concepts in a highly intuitive manner throughout, to allow quantitatively minded traders, structurers, marketers, salespeople and software engineers to acquire a more rigorous analytical understanding of these products. The book derives, demonstrates and analyses a wide range of models, modelling techniques and numerical algorithms that can be used for constructing valuation models and risk-management methods. Discussions focus on the practical realities of the market and demonstrate the behaviour of models based on real and recent market data across a range of currency pairs. It furthermore offers a clear description of the history and evolution of the different types of barrier options, and elucidates a great deal of industry nomenclature and jargon.


Applied Quantitative Finance

Applied Quantitative Finance

Author: Wolfgang Karl Härdle

Publisher: Springer

Published: 2017-08-02

Total Pages: 369

ISBN-13: 3662544865

DOWNLOAD EBOOK

This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.


Applied Conic Finance

Applied Conic Finance

Author: Dilip Madan

Publisher: Cambridge University Press

Published: 2016-10-13

Total Pages: 205

ISBN-13: 1316776778

DOWNLOAD EBOOK

This is a comprehensive introduction to the brand new theory of conic finance, also referred to as the two-price theory, which determines bid and ask prices in a consistent and fundamentally motivated manner. Whilst theories of one price classically eliminate all risk, the concept of acceptable risks is critical to the foundations of the two-price theory which sees risk elimination as typically unattainable in a modern financial economy. Practical examples and case studies provide the reader with a comprehensive introduction to the fundamentals of the theory, a variety of advanced quantitative models, and numerous real-world applications, including portfolio theory, option positioning, hedging, and trading contexts. This book offers a quantitative and practical approach for readers familiar with the basics of mathematical finance to allow them to boldly go where no quant has gone before.