Handbook of First-Order Partial Differential Equations

Handbook of First-Order Partial Differential Equations

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2001-11-15

Total Pages: 522

ISBN-13: 9780415272674

DOWNLOAD EBOOK

This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.


Partial Differential Equations

Partial Differential Equations

Author: Michael Shearer

Publisher: Princeton University Press

Published: 2015-03-01

Total Pages: 286

ISBN-13: 0691161291

DOWNLOAD EBOOK

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors


Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 434

ISBN-13: 048613217X

DOWNLOAD EBOOK

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.


Theory and Application of Hyperbolic Systems of Quasilinear Equations

Theory and Application of Hyperbolic Systems of Quasilinear Equations

Author: Hyun-Ku Rhee

Publisher: Courier Corporation

Published: 2001-01-01

Total Pages: 582

ISBN-13: 9780486419947

DOWNLOAD EBOOK

Second volume of a 2-volume set examines physical systems that can usefully be modeled by equations of the first order. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, more. Exercises. 1989 edition. 198 black-and-white illustrations. Author and subject indices.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Partial Differential Equations

Partial Differential Equations

Author: Thomas Hillen

Publisher: John Wiley & Sons

Published: 2014-08-21

Total Pages: 610

ISBN-13: 1118438434

DOWNLOAD EBOOK

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.


Partial Differential Equations I

Partial Differential Equations I

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 673

ISBN-13: 144197055X

DOWNLOAD EBOOK

The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.


Theory and Applications of Partial Differential Equations

Theory and Applications of Partial Differential Equations

Author: Piero Bassanini

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 446

ISBN-13: 1489918752

DOWNLOAD EBOOK

This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.


Applications of Lie's Theory of Ordinary and Partial Differential Equations

Applications of Lie's Theory of Ordinary and Partial Differential Equations

Author: L Dresner

Publisher: CRC Press

Published: 1998-01-01

Total Pages: 242

ISBN-13: 9781420050783

DOWNLOAD EBOOK

Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. Applications of Lie's Theory of Ordinary and Partial Differential Equations provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasizes clarity and immediacy of understanding rather than encyclopedic completeness, rigor, and generality. This enables readers to quickly grasp the essentials and start applying the methods to find solutions. The book includes worked examples and problems from a wide range of scientific and engineering fields.