Finite-Time Thermodynamics

Finite-Time Thermodynamics

Author: Stephen Berry

Publisher: Mdpi AG

Published: 2022-09-19

Total Pages: 0

ISBN-13: 9783036549491

DOWNLOAD EBOOK

The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is "the cost of haste". Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.


Finite Time Thermodynamics of Power and Refrigeration Cycles

Finite Time Thermodynamics of Power and Refrigeration Cycles

Author: Shubhash C. Kaushik

Publisher: Springer

Published: 2017-11-23

Total Pages: 331

ISBN-13: 3319628127

DOWNLOAD EBOOK

This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilities associated with real processes and the scientific reasons for deviations from ideal performance. The book is aimed at a broad readership, and offers a valuable reference book for graduate students, scholars and professionals working in the areas of thermal science and engineering.


Recent Advances in Finite-time Thermodynamics

Recent Advances in Finite-time Thermodynamics

Author: Chih Wu

Publisher: Nova Publishers

Published: 1999

Total Pages: 578

ISBN-13: 9781560726647

DOWNLOAD EBOOK

Finite-time thermodynamics (FTT) is one of the newest and most challenging areas in thermodynamics. The objective of this book is to provide results from research, which continues at an impressive rate. The authors make a concentrated effort to reach out and encourage academic and industrial participation in this book and to select papers that are relevant to current problems and practice. The numerous contributions from the international community are indicative of the continuing global interest in finite-time thermodynamics. All represent the newest developments in their respective areas.


Advances in Finite Time Thermodynamics

Advances in Finite Time Thermodynamics

Author: Lingen Chen

Publisher: Nova Publishers

Published: 2004

Total Pages: 282

ISBN-13: 9781590339145

DOWNLOAD EBOOK

Over 170 years ago, Sadi Carnot, a French engineer, published his famous article "Reflections on the motive power of fire" and established a new field of science: classical thermodynamics. Since 1985, the scholars in the Naval University of Engineering (from 1949 to 1998) have been making the research work in the field of finite time thermodynamics. This multi-authored book deals with the recent advances of finite time thermodynamics in the Naval University of Engineering. It illustrates how the gap between thermodynamics, heat transfer, and fluid mechanics is bridged. It also illustrates how the gap between physics and engineering is bridged. The readers should find the papers informative and useful for analysis and design of thermodynamic systems with improved performance. The authors hope that this collection of work devoted to finite thermodynamics will provide encouragement for further research in the field.


Entropy Generation Minimization

Entropy Generation Minimization

Author: Adrian Bejan

Publisher: CRC Press

Published: 2013-10-29

Total Pages: 389

ISBN-13: 1482239175

DOWNLOAD EBOOK

This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the me


Thermodynamic Approaches in Engineering Systems

Thermodynamic Approaches in Engineering Systems

Author: Stanislaw Sieniutycz

Publisher: Elsevier

Published: 2016-05-20

Total Pages: 740

ISBN-13: 0128093390

DOWNLOAD EBOOK

Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. - Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion - Written by a first-class expert in the field of advanced methods in thermodynamics - Provides a synthesis of recent thermodynamic developments in practical systems - Presents very elaborate literature discussions from the past fifty years


Carnot Cycle and Heat Engine Fundamentals and Applications

Carnot Cycle and Heat Engine Fundamentals and Applications

Author: Michel Feidt

Publisher: MDPI

Published: 2020-07-03

Total Pages: 140

ISBN-13: 3039288458

DOWNLOAD EBOOK

This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.


Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers

Author: D. Winterbone

Publisher: Butterworth-Heinemann

Published: 1996-11-01

Total Pages: 399

ISBN-13: 0080523366

DOWNLOAD EBOOK

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.


Thermodynamics in the Quantum Regime

Thermodynamics in the Quantum Regime

Author: Felix Binder

Publisher: Springer

Published: 2019-04-01

Total Pages: 985

ISBN-13: 3319990462

DOWNLOAD EBOOK

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.


Energy Optimization in Process Systems

Energy Optimization in Process Systems

Author: Stanislaw Sieniutycz

Publisher: Elsevier

Published: 2009-05-06

Total Pages: 771

ISBN-13: 008091442X

DOWNLOAD EBOOK

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions