Finite-Element Plasticity and Metalforming Analysis

Finite-Element Plasticity and Metalforming Analysis

Author: G. W. Rowe

Publisher: Cambridge University Press

Published: 1991-03-07

Total Pages: 325

ISBN-13: 0521383625

DOWNLOAD EBOOK

Describes a computer-based technique for aiding metal-forming processes, and so enable tool and product designers to reduce development lead times for the introduction of new products and help improve the quality and reliability of products.


Applied Metal Forming

Applied Metal Forming

Author: Henry S. Valberg

Publisher: Cambridge University Press

Published: 2010-03-31

Total Pages: 477

ISBN-13: 1316175413

DOWNLOAD EBOOK

Applied Metal Forming: Including FEM Analysis describes metal forming theory and how experimental techniques can be used to study any metal forming operation with great accuracy. For each primary class of processes, such as forging, rolling, extrusion, wiredrawing, and sheet-metal forming, it explains how FEA (Finite Element Analysis) can be applied with great precision to characterize the forming condition and in this way optimize the processes. FEA has made it possible to build very realistic FEM-models of any metal forming process, including complex three-dimensional forming operations, in which complex products are shaped by complex dies. Thus, using FEA it is now possible to visualize any metal forming process and to study strain, stresses, and other forming conditions inside the parts being manufactured as they develop throughout the process.


Metal Forming and the Finite-Element Method

Metal Forming and the Finite-Element Method

Author: the late Shiro Kobayashi

Publisher: Oxford University Press

Published: 1989-03-09

Total Pages: 398

ISBN-13: 0195364570

DOWNLOAD EBOOK

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


Basic Engineering Plasticity

Basic Engineering Plasticity

Author: David Rees

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 526

ISBN-13: 0080470904

DOWNLOAD EBOOK

Plasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals. - Brings together the elements of the mechanics of plasticity most pertinent to engineers, at both the micro- and macro-levels - Covers the theory and application of topics such as Limit Analysis, Slip Line Field theory, Crystal Plasticity, Sheet and Bulk Metal Forming, as well as the use of Finite Element Analysis - Clear and well-organized with extensive worked engineering application examples, and end of chapter exercises


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Modeling of Metal Forming and Machining Processes

Modeling of Metal Forming and Machining Processes

Author: Prakash Mahadeo Dixit

Publisher: Springer Science & Business Media

Published: 2008-05-14

Total Pages: 599

ISBN-13: 1848001894

DOWNLOAD EBOOK

Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.


Numerical Modelling of Material Deformation Processes

Numerical Modelling of Material Deformation Processes

Author: Peter Hartley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 476

ISBN-13: 144711745X

DOWNLOAD EBOOK

The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.


Finite-Element Plasticity and Metalforming Analysis

Finite-Element Plasticity and Metalforming Analysis

Author: G. W. Rowe

Publisher: Cambridge University Press

Published: 2005-07-07

Total Pages: 324

ISBN-13: 9780521017312

DOWNLOAD EBOOK

Finite Element Plasticity and Metalforming Analysis is concerned with describing a computer based technique for aiding the optimisation of metalforming processes. These methods should enable tool and product designers to reduce development lead times for the introduction of new products, to optimise the process and to help improve the quality and reliability of products. The book is specifically devoted to the finite element method and its use in plasticity problems. It details the theoretical background assuming little previous knowledge, and describes how it can be implemented and used to examine realistic metalforming processes. Forging, rolling and extrusion are typical processes covered, in addition to specific problems such as ductile fracture and how it can be predicted. It is the first text that describes in detail elastic-plastic finite-element theory and how it is used in forming analyses. The technique described can be used to simulate metal flow in 2- and 3-D problems and can provide details of stress, strain, strain-rate and temperature distributions in the workpiece as it is being formed.


Computational Plasticity in Powder Forming Processes

Computational Plasticity in Powder Forming Processes

Author: Amir Khoei

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 483

ISBN-13: 0080529704

DOWNLOAD EBOOK

The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.


Mechanics of Sheet Metal Forming

Mechanics of Sheet Metal Forming

Author: D. Koistinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 1461328802

DOWNLOAD EBOOK

This volume records the proceedings of an international symposium on "ME CHANICS OF SHEET METAL FORMING: Material Behavior and Deformation Analysis." It was sponsored and held at the General Motors Research Labora tories on October 17-18, 1977. This symposium was the twenty-first in an annual series. The objective of this symposium was to discuss the research frontiers in experimental and theoretical methods of sheet metal forming analysis and, also, to determine directions of future research to advance technology that would be useful in metal stamping plants. Metal deformation analyses which provide guide lines for metal flanging are already in use. Moreover, recent advances in computer techniques for solving plastic flow equations and in measurements of material parameters are leading to dynamic models of many stamping operations. These models would accurately predict the stresses and strains in the sheet as a function of punch travel. They would provide the engineer with the knowledge he needs to improve die designs. The symposium papers were organized into five sessions: the state of the art, constitutive relations of sheet metal, role of friction, sheet metal formability, and deformation analysis of stamping operations. We believe this volume not only summarizes the various viewpoints at the time of the symposium, but also pro vides an outlook for materials and mechanics research in the future.