Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control

Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 256

ISBN-13: 1461384893

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications NONSMOOTH ANALYSIS AND GEOMETRIC METHODS IN DETERMINISTIC OPTIMAL CONTROL is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory. " The purpose of this workshop was to concentrate on powerful mathematical techniques that have been de veloped in deterministic optimal control theory after the basic foundations of the theory (existence theorems, maximum principle, dynamic program ming, sufficiency theorems for sufficiently smooth fields of extremals) were laid out in the 1960s. These advanced techniques make it possible to derive much more detailed information about the structure of solutions than could be obtained in the past, and they support new algorithmic approaches to the calculation of such solutions. We thank Boris S. Mordukhovich and Hector J. Sussmann for organiz ing the workshop and editing the proceedings. We also take this oppor tunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE This volume contains the proceedings of the workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control held at the Institute for Mathematics and its Applications on February 8-17, 1993 during a special year devoted to Control Theory and its Applications. The workshop-whose organizing committee consisted of V. J urdjevic, B. S. Mordukhovich, R. T. Rockafellar, and H. J.


Approximation and Optimization of Discrete and Differential Inclusions

Approximation and Optimization of Discrete and Differential Inclusions

Author: Elimhan N Mahmudov

Publisher: Elsevier

Published: 2011-08-25

Total Pages: 396

ISBN-13: 0123884284

DOWNLOAD EBOOK

Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples


Introduction to the Theory of Differential Inclusions

Introduction to the Theory of Differential Inclusions

Author: Georgi V. Smirnov

Publisher: American Mathematical Society

Published: 2022-02-22

Total Pages: 226

ISBN-13: 1470468549

DOWNLOAD EBOOK

A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.


Variational Analysis and Generalized Differentiation I

Variational Analysis and Generalized Differentiation I

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2006-08-08

Total Pages: 598

ISBN-13: 3540312471

DOWNLOAD EBOOK

Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.


Variational Analysis and Generalized Differentiation II

Variational Analysis and Generalized Differentiation II

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2006-03-02

Total Pages: 630

ISBN-13: 3540312463

DOWNLOAD EBOOK

Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.


A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems

A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems

Author: Vadim Azhmyakov

Publisher: Butterworth-Heinemann

Published: 2019-02-14

Total Pages: 436

ISBN-13: 012814789X

DOWNLOAD EBOOK

A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems proposes a unified approach to effective and numerically tractable relaxation schemes for optimal control problems of hybrid and switched systems. The book gives an overview of the existing (conventional and newly developed) relaxation techniques associated with the conventional systems described by ordinary differential equations. Next, it constructs a self-contained relaxation theory for optimal control processes governed by various types (sub-classes) of general hybrid and switched systems. It contains all mathematical tools necessary for an adequate understanding and using of the sophisticated relaxation techniques. In addition, readers will find many practically oriented optimal control problems related to the new class of dynamic systems. All in all, the book follows engineering and numerical concepts. However, it can also be considered as a mathematical compendium that contains the necessary formal results and important algorithms related to the modern relaxation theory. - Illustrates the use of the relaxation approaches in engineering optimization - Presents application of the relaxation methods in computational schemes for a numerical treatment of the sophisticated hybrid/switched optimal control problems - Offers a rigorous and self-contained mathematical tool for an adequate understanding and practical use of the relaxation techniques - Presents an extension of the relaxation methodology to the new class of applied dynamic systems, namely, to hybrid and switched control systems


Harmonic Analysis, Partial Differential Equations, and Related Topics

Harmonic Analysis, Partial Differential Equations, and Related Topics

Author: Estela A. Gavosto

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 186

ISBN-13: 0821840932

DOWNLOAD EBOOK

This collection of contributed articles comprises the scientific program of the fifth annual Prairie Analysis Seminar. All articles represent important current advances in the areas of partial differential equations, harmonic analysis, and Fourier analysis. A range of interrelated topics is presented, with articles concerning Painleve removability, pseudodifferential operators, $A p$ weights, nonlinear Schrodinger equations, singular integrals, the wave equation, the Benjamin-Ono equation, quasi-geostrophic equations, quasiconformal mappings, integral inclusions, Bellman function methods, weighted gradient estimates, Hankel operators, and dynamic optimization problems. Most importantly, the articles illustrate the fruitful interaction between harmonic analysis, Fourier analysis, and partial differential equations, and illustrate the successful application of techniques and ideas from each of these areas to the others.


System Modeling and Optimization

System Modeling and Optimization

Author: Adam Korytowski

Publisher: Springer Science & Business Media

Published: 2009-10-15

Total Pages: 515

ISBN-13: 3642048013

DOWNLOAD EBOOK

rd This book constitutes a collection of extended versions of papers presented at the 23 IFIP TC7 Conference on System Modeling and Optimization, which was held in C- cow, Poland, on July 23–27, 2007. It contains 7 plenary and 22 contributed articles, the latter selected via a peer reviewing process. Most of the papers are concerned with optimization and optimal control. Some of them deal with practical issues, e. g. , p- formance-based design for seismic risk reduction, or evolutionary optimization in structural engineering. Many contributions concern optimization of infini- dimensional systems, ranging from a general overview of the variational analysis, through optimization and sensitivity analysis of PDE systems, to optimal control of neutral systems. A significant group of papers is devoted to shape analysis and opti- zation. Sufficient optimality conditions for ODE problems, and stochastic control methods applied to mathematical finance, are also investigated. The remaining papers are on mathematical programming, modeling, and information technology. The conference was the 23rd event in the series of such meetings biennially org- ized under the auspices of the Seventh Technical Committee “Systems Modeling and Optimization” of the International Federation for Information Processing (IFIP TC7).


Optimal Control, Stabilization and Nonsmooth Analysis

Optimal Control, Stabilization and Nonsmooth Analysis

Author: Marcio S. de Queiroz

Publisher: Springer Science & Business Media

Published: 2004-04-20

Total Pages: 380

ISBN-13: 9783540213307

DOWNLOAD EBOOK

This edited book contains selected papers presented at the Louisiana Conference on Mathematical Control Theory (MCT'03), which brought together over 35 prominent world experts in mathematical control theory and its applications. The book forms a well-integrated exploration of those areas of mathematical control theory in which nonsmooth analysis is having a major impact. These include necessary and sufficient conditions in optimal control, Lyapunov characterizations of stability, input-to-state stability, the construction of feedback mechanisms, viscosity solutions of Hamilton-Jacobi equations, invariance, approximation theory, impulsive systems, computational issues for nonlinear systems, and other topics of interest to mathematicians and control engineers. The book has a strong interdisciplinary component and was designed to facilitate the interaction between leading mathematical experts in nonsmooth analysis and engineers who are increasingly using nonsmooth analytic tools.