The World Bank is providing assistance to the Government of China to help develop recommendations for changes to China's present system of financial incentives for commercial renewable energy development. This book reports on a Bank workshop that examined international experience with financial incentives for grid-connected wind power systems and off-grid photovoltaic systems in the United Kingdom, Germany, the Netherlands, Denmark, the United States (California), India, and China. The collective experiences of the countries were further examined to indicate other directions for developing financial incentives for market-based renewable energy development, as well as the underlying reasons for these tendencies.
This study provides economic models of the sustainability and affordability of renewable energy support schemes alongside operational advice on how the regulatory design may need to be modified to minimize the impact on the budget and be affordable to the poor, as well as how to identify and fill the financing gap.
The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.
This book introduces readers to hydrogen as an essential energy carrier for use with renewable sources of primary energy. It provides an overview of the state of the art, while also highlighting the developmental and market potential of hydrogen in the context of energy technologies; mobile, stationary and portable applications; uninterruptible power supplies and in the chemical industry. Written by experienced practitioners, the book addresses the needs of engineers, chemists and business managers, as well as graduate students and researchers.
This report proposes a renewable energy subsidy mechanism for Indonesia to close the gap between the costs of renewable and conventional power generation. It takes into account the additional economic benefits of renewable power and considers how the government can support its rapid deployment in the power sector. The report emphasizes the need for Indonesia to adopt international best practice for planning, procurement, contracting, and risk mitigation to reduce the financial costs of renewable energy development. To achieve this, implementation of the subsidy should be part of a broader inter-ministerial electricity policy reform program.
A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.
The majority of energy produced in the United States is derived from fossil fuels. In recent years, however, revenue losses associated with tax incentives that benefit renewables have exceeded revenue losses associated with tax incentives benefitting fossil fuels. As Congress evaluates the tax code and various energy tax incentives, there has been interest in understanding how energy tax benefits under the current tax system are distributed across different domestic energy resources. In 2010, fossil fuels accounted for 78.0% of U.S. primary energy production. The remaining primary energy production is attributable to nuclear electric and renewable energy resources, with shares of 11.2% and 10.7%, respectively. Primary energy production using renewable energy resources includes both electricity generated using renewable resources, including hydropower, as well as renewable fuels (e.g., biofuels). The value of federal tax support for the energy sector was estimated to be $19.1 billion in 2010. Of this, roughly one-third ($6.3 billion) was for tax incentives that support renewable fuels. Another $6.7 billion can be attributed to tax-related incentives supporting various renewable energy technologies (e.g., wind and solar). Targeted tax incentives supporting fossil energy resources totaled $2.4 billion. This report provides an analysis of the value of energy tax incentives relative to primary energy production levels. Relative to their share in overall energy production, renewables receive more federal financial support through the tax code than energy produced using fossil energy resources. Within the renewable energy sector, relative to the level of energy produced, biofuels receive the most tax-related financial support. The report also summarizes the results of recently published studies by the Energy Information Administration (EIA) evaluating energy subsidies across various technologies. According to data presented in the EIA reports, the share of direct federal financial support for electricity produced using coal, natural gas and petroleum, and nuclear energy resources was similar in 2007 and 2010. Between 2007 and 2010, however, the share of federal financial support for electricity produced by renewables increased substantially, and federal financial support for refined coal disappeared. Projections of the annual cost of energy-related tax provisions through 2015 show that, under current law, tax-related support for renewable fuels will effectively disappear after 2012. The amount of tax-related support for renewable electricity is also scheduled to decline over time given the recent expiration of the Section 1603 grants in lieu of tax credits program and the scheduled expiration of other tax incentives for renewable electricity, such as the production tax credit (PTC). The value of energy-related tax provisions that benefit fossil fuels is projected to remain relatively constant over time, under current law, as most provisions that benefit fossil fuels are permanent Internal Revenue Code (IRC) provisions.
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.