Field Extensions and Galois Theory

Field Extensions and Galois Theory

Author: Julio R. Bastida

Publisher: Cambridge University Press

Published: 1984-12-28

Total Pages: 354

ISBN-13: 9780521302425

DOWNLOAD EBOOK

This 1984 book aims to make the general theory of field extensions accessible to any reader with a modest background in groups, rings and vector spaces. Galois theory is regarded amongst the central and most beautiful parts of algebra and its creation marked the culmination of generations of investigation.


Field and Galois Theory

Field and Galois Theory

Author: Patrick Morandi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 294

ISBN-13: 1461240409

DOWNLOAD EBOOK

In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.


Fields and Rings

Fields and Rings

Author: Irving Kaplansky

Publisher: University of Chicago Press

Published: 1972

Total Pages: 217

ISBN-13: 0226424510

DOWNLOAD EBOOK

This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews


Galois Theory of p-Extensions

Galois Theory of p-Extensions

Author: Helmut Koch

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 196

ISBN-13: 3662049678

DOWNLOAD EBOOK

Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.


Algebraic Extensions of Fields

Algebraic Extensions of Fields

Author: Paul J. McCarthy

Publisher: Courier Corporation

Published: 2014-01-07

Total Pages: 194

ISBN-13: 048678147X

DOWNLOAD EBOOK

Graduate-level coverage of Galois theory, especially development of infinite Galois theory; theory of valuations, prolongation of rank-one valuations, more. Over 200 exercises. Bibliography. "...clear, unsophisticated and direct..." — Math.


Galois Theory Through Exercises

Galois Theory Through Exercises

Author: Juliusz Brzeziński

Publisher: Springer

Published: 2018-03-21

Total Pages: 296

ISBN-13: 331972326X

DOWNLOAD EBOOK

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.


Fields and Galois Theory

Fields and Galois Theory

Author: John M. Howie

Publisher: Springer Science & Business Media

Published: 2007-10-11

Total Pages: 230

ISBN-13: 1852339861

DOWNLOAD EBOOK

A modern and student-friendly introduction to this popular subject: it takes a more "natural" approach and develops the theory at a gentle pace with an emphasis on clear explanations Features plenty of worked examples and exercises, complete with full solutions, to encourage independent study Previous books by Howie in the SUMS series have attracted excellent reviews


Topics in Galois Theory

Topics in Galois Theory

Author: Jean-Pierre Serre

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 120

ISBN-13: 1439865256

DOWNLOAD EBOOK

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi


Galois Theories

Galois Theories

Author: Francis Borceux

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 360

ISBN-13: 9780521803090

DOWNLOAD EBOOK

Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.


Field Theory

Field Theory

Author: Steven Roman

Publisher: Springer

Published: 2013-12-20

Total Pages: 275

ISBN-13: 1461225167

DOWNLOAD EBOOK

Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory.