Feedback Control Theory for Dynamic Traffic Assignment

Feedback Control Theory for Dynamic Traffic Assignment

Author: Pushkin Kachroo

Publisher: Springer

Published: 2018-05-16

Total Pages: 291

ISBN-13: 3319692313

DOWNLOAD EBOOK

This book develops a methodology for designing feedback control laws for dynamic traffic assignment (DTA) exploiting the introduction of new sensing and information-dissemination technologies to facilitate the introduction of real-time traffic management in intelligent transportation systems. Three methods of modeling the traffic system are discussed: partial differential equations representing a distributed-parameter setting; continuous-time ordinary differential equations (ODEs) representing a continuous-time lumped-parameter setting; and discreet-time ODEs representing a discrete-time lumped-parameter setting. Feedback control formulations for reaching road-user-equilibrium are presented for each setting and advantages and disadvantage of using each are addressed. The closed-loop methods described are proposed expressly to avoid the counter-productive shifting of bottlenecks from one route to another because of driver over-reaction to routing information. The second edition of Feedback Control Theory for Dynamic Traffic Assignment has been thoroughly updated with completely new chapters: a review of the DTA problem and emphasizing real-time-feedback-based problems; an up-to-date presentation of pertinent traffic-flow theory; and a treatment of the mathematical solution to the traffic dynamics. Techinques accounting for the importance of entropy are further new inclusions at various points in the text. Researchers working in traffic control will find the theoretical material presented a sound basis for further research; the continual reference to applications will help professionals working in highway administration and engineering with the increasingly important task of maintaining and smoothing traffic flow; the extensive use of end-of-chapter exercises will help the graduate student and those new to the field to extend their knowledge.


Advances in Dynamic Network Modeling in Complex Transportation Systems

Advances in Dynamic Network Modeling in Complex Transportation Systems

Author: Satish V. Ukkusuri

Publisher: Springer Science & Business Media

Published: 2013-03-21

Total Pages: 322

ISBN-13: 1461462436

DOWNLOAD EBOOK

This edited book focuses on recent developments in Dynamic Network Modeling, including aspects of route guidance and traffic control as they relate to transportation systems and other complex infrastructure networks. Dynamic Network Modeling is generally understood to be the mathematical modeling of time-varying vehicular flows on networks in a fashion that is consistent with established traffic flow theory and travel demand theory. Dynamic Network Modeling as a field has grown over the last thirty years, with contributions from various scholars all over the field. The basic problem which many scholars in this area have focused on is related to the analysis and prediction of traffic flows satisfying notions of equilibrium when flows are changing over time. In addition, recent research has also focused on integrating dynamic equilibrium with traffic control and other mechanism designs such as congestion pricing and network design. Recently, advances in sensor deployment, availability of GPS-enabled vehicular data and social media data have rapidly contributed to better understanding and estimating the traffic network states and have contributed to new research problems which advance previous models in dynamic modeling. A recent National Science Foundation workshop on “Dynamic Route Guidance and Traffic Control” was organized in June 2010 at Rutgers University by Prof. Kaan Ozbay, Prof. Satish Ukkusuri , Prof. Hani Nassif, and Professor Pushkin Kachroo. This workshop brought together experts in this area from universities, industry and federal/state agencies to present recent findings in this area. Various topics were presented at the workshop including dynamic traffic assignment, traffic flow modeling, network control, complex systems, mobile sensor deployment, intelligent traffic systems and data collection issues. This book is motivated by the research presented at this workshop and the discussions that followed.


Pedestrian Dynamics

Pedestrian Dynamics

Author: Pushkin Kachroo

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 169

ISBN-13: 1439805202

DOWNLOAD EBOOK

Homeland security, transportation, and city planning depend upon well-designed evacuation routes. You can’t wait until the day of to realize your plan won’t work. Designing successful evacuation plans requires an in-depth understanding of models and control designs for the problems of traffic flow, construction and road closures, and the intangible human factors. Pedestrian Dynamics: Mathematical Theory and Evacuation Control clearly delineates the derivation of mathematical models for pedestrian dynamics and how to use them to design feedback controls for evacuations. The book includes: Mathematical models derived from basic principles Mathematical analysis of the model Details of past work MATLAB® code 65 figures and 400 equations Unlike most works on traffic flow, this book examines the development of optimal methods to effectively control and improve pedestrian traffic flow. The work of a leading expert, it examines the differential equations applied to conservation laws encountered in the study of pedestrian dynamics and evacuation control problem. The author presents new pedestrian traffic models for multi-directional flow in two dimensions. He considers a range of control models in various simulations, including relaxed models and those concerned with direction and magnitude velocity commands. He also addresses questions of time, cost, and scalability. The book clearly demonstrates what the future challenges are and provides the tools to meet them.


Metaheuristics and Optimization in Computer and Electrical Engineering

Metaheuristics and Optimization in Computer and Electrical Engineering

Author: Navid Razmjooy

Publisher: Springer Nature

Published: 2020-11-16

Total Pages: 311

ISBN-13: 3030566897

DOWNLOAD EBOOK

The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.


Feedback Control Theory for Dynamic Traffic Assignment

Feedback Control Theory for Dynamic Traffic Assignment

Author: Pushkin Kachroo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 219

ISBN-13: 1447108159

DOWNLOAD EBOOK

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, .... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Micro-technology and modern communications technology are revolutionising many aspects of our daily lives and so it is not surprising that it is impacting societal transportation systems whether our highways, airways, seaways or railways. The Advances in Industrial Control series reported on these developments for long haul railway systems in a monograph by Howlett and Pudney (ISBN 3-S40-19990-X, 1995). Now it is the turn of transportation in a contribution from Pushkin Kachroo and Kaan Ozbay. The authors viewpoint is that this new set of transportation problems are control problems and that control engineers should be highly active in this field. Their volume covers all the aspects of modelling, problem formulation, and applies various control methodologies to solve the control problems formulated.


Bounded Dynamic Stochastic Systems

Bounded Dynamic Stochastic Systems

Author: Hong Wang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 188

ISBN-13: 1447104811

DOWNLOAD EBOOK

Over the past decades, although stochastic system control has been studied intensively within the field of control engineering, all the modelling and control strategies developed so far have concentrated on the performance of one or two output properties of the system. such as minimum variance control and mean value control. The general assumption used in the formulation of modelling and control strategies is that the distribution of the random signals involved is Gaussian. In this book, a set of new approaches for the control of the output probability density function of stochastic dynamic systems (those subjected to any bounded random inputs), has been developed. In this context, the purpose of control system design becomes the selection of a control signal that makes the shape of the system outputs p.d.f. as close as possible to a given distribution. The book contains material on the subjects of: - Control of single-input single-output and multiple-input multiple-output stochastic systems; - Stable adaptive control of stochastic distributions; - Model reference adaptive control; - Control of nonlinear dynamic stochastic systems; - Condition monitoring of bounded stochastic distributions; - Control algorithm design; - Singular stochastic systems. A new representation of dynamic stochastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Freeway Traffic Modelling and Control

Freeway Traffic Modelling and Control

Author: Antonella Ferrara

Publisher: Springer

Published: 2018-04-12

Total Pages: 324

ISBN-13: 3319759612

DOWNLOAD EBOOK

This monograph provides an extended overview of modelling and control approaches for freeway traffic systems, moving from the early methods to the most recent scientific results and field implementations. The concepts of green traffic systems and smart mobility are addressed in the book, since a modern freeway traffic management system should be designed to be sustainable. Future perspectives on freeway traffic control are also analysed and discussed with reference to the most recent technological advancements The most widespread modelling and control techniques for freeway traffic systems are treated with mathematical rigour, but also discussed with reference to their performance assessment and to the expected impact of their practical usage in real traffic systems. In order to make the book accessible to readers of different backgrounds, some fundamental aspects of traffic theory as well as some basic control concepts, useful for better understanding the addressed topics, are provided in the book. This monograph can be used as a textbook for courses on transport engineering, traffic management and control. It is also addressed to experts working in traffic monitoring and control areas and to researchers, technicians and practitioners of both transportation and control engineering. The authors’ systematic vision of traffic modelling and control methods developed over decades makes the book a valuable survey resource for freeway traffic managers, freeway stakeholders and transportation public authorities with professional interests in freeway traffic systems. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Nonlinear Model-based Process Control

Nonlinear Model-based Process Control

Author: Rashid M. Ansari

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 248

ISBN-13: 144710739X

DOWNLOAD EBOOK

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The last decade has seen considerable interest in reviving the fortunes of non linear control. In contrast to the approaches of the 60S, 70S and 80S a very pragmatic agenda for non-linear control is being pursued using the model-based predictive control paradigm. This text by R. Ansari and M. Tade gives an excellent synthesis of this new direction. Two strengths emphasized by the text are: (i) four applications found in refinery processes are used to give the text a firm practical continuity; (ii) a non-linear model-based control architecture is used to give the method a coherent theoretical framework.


Understanding Real Traffic

Understanding Real Traffic

Author: Boris S. Kerner

Publisher: Springer Nature

Published: 2021-09-01

Total Pages: 248

ISBN-13: 3030796027

DOWNLOAD EBOOK

This book addresses the reader interested in vehicular traffic phenomena, who have not learned about them before. It presents traffic phenomena like traffic breakdown and the emergence of moving traffic jams by showcasing empirical traffic data measured in real-world traffic. The author explains how these empirical traffic studies have led to the three-phase traffic theory and why this new theory is in conflict with standard traffic theories developed before. Moreover, he presents the reason for the failure of applications of standard traffic theories in real-world traffic and discusses why understanding real traffic has caused a paradigm shift in traffic and transportation science. The book examines why understanding real traffic breakdown is the basis for an explanation for the autonomous driving effects on traffic flow. It shows that understanding real traffic is possible from real-world traffic data without the need of mathematical traffic models. This makes the book intuitive for non-specialists, who can qualitatively understand all the basic features of traffic dynamics. In turn, experienced traffic researchers can grasp concepts and ideas made here easily accessible by the author, one of the leading pioneers in the field of vehicular traffic.


Handbook of Transportation Science

Handbook of Transportation Science

Author: Randolph Hall

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 737

ISBN-13: 0306480581

DOWNLOAD EBOOK

Over the past thirty-five years, a substantial amount of theoretical and empirical scholarly research has been developed across the discipline domains of Transportation. This research has been synthesized into a systematic handbook that examines the scientific concepts, methods, and principles of this growing and evolving field. The Handbook of Transportation Science outlines the field of transportation as a scientific discipline that transcends transportation technology and methods. Whether by car, truck, airplane - or by a mode of transportation that has not yet been conceived - transportation obeys fundamental properties. The science of transportation defines these properties, and demonstrates how our knowledge of one mode of transportation can be used to explain the behavior of another. Transportation scientists are motivated by the desire to explain spatial interactions that result in movement of people or objects from place to place. Its methodologies draw from physics, operations research, probability and control theory.