Feature Extraction, Construction and Selection

Feature Extraction, Construction and Selection

Author: Huan Liu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 418

ISBN-13: 1461557259

DOWNLOAD EBOOK

There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.


Computational Methods of Feature Selection

Computational Methods of Feature Selection

Author: Huan Liu

Publisher: CRC Press

Published: 2007-10-29

Total Pages: 437

ISBN-13: 1584888792

DOWNLOAD EBOOK

Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the


Feature Extraction

Feature Extraction

Author: Isabelle Guyon

Publisher: Springer

Published: 2008-11-16

Total Pages: 765

ISBN-13: 3540354883

DOWNLOAD EBOOK

This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.


Feature Selection for Data and Pattern Recognition

Feature Selection for Data and Pattern Recognition

Author: Urszula Stańczyk

Publisher: Springer

Published: 2016-09-24

Total Pages: 0

ISBN-13: 9783662508459

DOWNLOAD EBOOK

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.


Feature Engineering for Machine Learning

Feature Engineering for Machine Learning

Author: Alice Zheng

Publisher: "O'Reilly Media, Inc."

Published: 2018-03-23

Total Pages: 218

ISBN-13: 1491953195

DOWNLOAD EBOOK

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques


Lazy Learning

Lazy Learning

Author: David W. Aha

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 421

ISBN-13: 9401720533

DOWNLOAD EBOOK

This edited collection describes recent progress on lazy learning, a branch of machine learning concerning algorithms that defer the processing of their inputs, reply to information requests by combining stored data, and typically discard constructed replies. It is the first edited volume in AI on this topic, whose many synonyms include `instance-based', `memory-based'. `exemplar-based', and `local learning', and whose topic intersects case-based reasoning and edited k-nearest neighbor classifiers. It is intended for AI researchers and students interested in pursuing recent progress in this branch of machine learning, but, due to the breadth of its contributions, it should also interest researchers and practitioners of data mining, case-based reasoning, statistics, and pattern recognition.


Applications of Multi-objective Evolutionary Algorithms

Applications of Multi-objective Evolutionary Algorithms

Author: Carlos A. Coello Coello

Publisher: World Scientific

Published: 2004

Total Pages: 791

ISBN-13: 9812567798

DOWNLOAD EBOOK

This book presents an extensive variety of multi-objective problems across diverse disciplines, along with statistical solutions using multi-objective evolutionary algorithms (MOEAs). The topics discussed serve to promote a wider understanding as well as the use of MOEAs, the aim being to find good solutions for high-dimensional real-world design applications. The book contains a large collection of MOEA applications from many researchers, and thus provides the practitioner with detailed algorithmic direction to achieve good results in their selected problem domain.


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2010-09-10

Total Pages: 1269

ISBN-13: 0387098232

DOWNLOAD EBOOK

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.


Soft Computing for Knowledge Discovery and Data Mining

Soft Computing for Knowledge Discovery and Data Mining

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2007-10-25

Total Pages: 431

ISBN-13: 038769935X

DOWNLOAD EBOOK

Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.


Data Mining and Knowledge Discovery with Evolutionary Algorithms

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Author: Alex A. Freitas

Publisher: Springer Science & Business Media

Published: 2002-08-21

Total Pages: 284

ISBN-13: 9783540433316

DOWNLOAD EBOOK

This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics