FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium

FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium

Author: Debdeep Sarkar

Publisher: Springer Nature

Published: 2022-04-22

Total Pages: 91

ISBN-13: 9811916306

DOWNLOAD EBOOK

This book presents a detailed analytical and computational electromagnetic (CEM) treatment of guided electromagnetic (EM) wave propagation in independently time-varying dielectric medium, using the finite-difference time-domain (FDTD) simulation technique. The contents provide an extensive literature review, explaining the importance of time-varying media (temporal photonic crystals) in new exotic applications that involve rich EM phenomena such as parametric amplification, frequency conversion, non-reciprocal gain, electromagnetic energy accumulation, temporal coating and temporal aiming (beam-forming). A one-dimensional (1D) FDTD simulation paradigm is then formulated in this book, starting from Maxwell's equations and boundary conditions. The issues of hard/soft source realizations, perfectly matched layers (PMLs), choice of simulation parameters (cell-size and time-stepping) are thoroughly explained through new visualization tools. This book provides a unique combination of rigorous analytical techniques, several FDTD simulation examples with reproducible source-codes, and new visualization/post-processing mechanisms. The contents of this book should prove to be useful for students, research scholars, scientists and engineers, working in the field of applied electromagnetics, and aiming to design cutting-edge microwave/optical devices based on time-varying medium.


Classical Relativistic Electrodynamics

Classical Relativistic Electrodynamics

Author: Toshiyuki Shiozawa

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 238

ISBN-13: 3662062615

DOWNLOAD EBOOK

An advanced course of classical electrodynamics with application to the generation of high-power coherent radiation in the microwave to optical-wave regions. Specifically, it provides readers with the basics of advanced electromagnetic theory and relativistic electrodynamics, guiding them step by step through the theory of free-electron lasers. The theoretical treatment throughout this book is fully developed by means of the usual three-dimensional vector calculus.


Electromagnetic Simulation Using the FDTD Method

Electromagnetic Simulation Using the FDTD Method

Author: Dennis M. Sullivan

Publisher: John Wiley & Sons

Published: 2013-05-17

Total Pages: 169

ISBN-13: 1118646630

DOWNLOAD EBOOK

A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.


Photonic Crystals

Photonic Crystals

Author: John D. Joannopoulos

Publisher: Princeton University Press

Published: 2011-10-30

Total Pages: 305

ISBN-13: 1400828244

DOWNLOAD EBOOK

Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.


Metamaterial Electromagnetic Wave Absorbers

Metamaterial Electromagnetic Wave Absorbers

Author: Willie J. Padilla

Publisher: Morgan & Claypool Publishers

Published: 2022-01-24

Total Pages: 199

ISBN-13: 1636392601

DOWNLOAD EBOOK

Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.


Broadbanding Techniques for Radomes

Broadbanding Techniques for Radomes

Author: P. S. Mohammed Yazeen

Publisher: Springer Nature

Published: 2020-12-14

Total Pages: 78

ISBN-13: 9813341300

DOWNLOAD EBOOK

This SpringerBrief details various techniques employed for enhancing the transmission efficiency of radomes by modifying the radome wall configurations. These broadbanding techniques are based on inclusion of metallic wire-grids/meshes in the radomewalls, inclusion of metallic strip-gratings in the radome layers, inclusion of FSS based structures in between the radome layers and the use of inhomogeneous dielectric structures as radome wall. The volume provides detailed chapter-wise explanation of the design aspects and discusses the performance analysis of the modified radome wall configurations. It will be of interest to researchers, academicians and students working in the field of radomes.


Plasmonics: Fundamentals and Applications

Plasmonics: Fundamentals and Applications

Author: Stefan Alexander Maier

Publisher: Springer Science & Business Media

Published: 2007-05-16

Total Pages: 234

ISBN-13: 0387378251

DOWNLOAD EBOOK

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.


Electromagnetic Shielding

Electromagnetic Shielding

Author: Salvatore Celozzi

Publisher: John Wiley & Sons

Published: 2008-05-16

Total Pages: 385

ISBN-13: 0470268476

DOWNLOAD EBOOK

The definitive reference on electromagnetic shielding materials, configurations, approaches, and analyses This reference provides a comprehensive survey of options for the reduction of the electromagnetic field levels in prescribed areas. After an introduction and an overview of available materials, it discusses figures of merit for shielding configurations, the shielding effectiveness of stratified media, numerical methods for shielding analyses, apertures in planar metal screens, enclosures, and cable shielding. Up to date and comprehensive, Electromagnetic Shielding: Explores new and innovative techniques in electromagnetic shielding Presents a critical approach to electromagnetic shielding that highlights the limits of formulations based on plane-wave sources Analyzes aspects not normally considered in electromagnetic shielding, such as the effects of the content of the shielding enclosures Includes references at the end of each chapter to facilitate further study The last three chapters discuss frequency-selective shielding, shielding design procedures, and uncommon ways of shielding—areas ripe for further research. This is an authoritative, hands-on resource for practicing telecommunications and electrical engineers, as well as researchers in industry and academia who are involved in the design and analysis of electromagnetic shielding structures.