Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs).

Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs).

Author:

Publisher:

Published: 2008

Total Pages: 31

ISBN-13:

DOWNLOAD EBOOK

Unmanned aerial vehicles (UAVs) are critical components of the future naval forces. UAV control and monitoring with autonomous operation will become an absolute necessity and adaptive cooperation of vehicles is the only practical alternative. The objective of this project is to develop and evaluate new methodologies for cooperative (formation) control of multiple unmanned air vehicles. The goal is to have multiple UAVs working together as a group. Instead of separately assigning distinct tasks to each vehicle, the operator would assign tasks to the UAV group, which then determines the best way to accomplish each task, freeing the operator to maintain surveillance over the entire operation. In this project we investigated Path Tracking and obstacle avoidance of UAVs using fuzzy logic method. Algorithms for close formation control of multi-UAVs are developed and simulated. We also investigated fault-tolerant control of single UAVs by neuro-adaptive method. Detailed description of this method is provided in this document. The project has supported S graduate students with 9 technical papers published.


Fault-tolerant Flight Control and Guidance Systems

Fault-tolerant Flight Control and Guidance Systems

Author: Guillaume J. J. Ducard

Publisher: Springer Science & Business Media

Published: 2009-05-14

Total Pages: 268

ISBN-13: 1848825617

DOWNLOAD EBOOK

This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.


Safety And Reliability In Cooperating Unmanned Aerial Systems

Safety And Reliability In Cooperating Unmanned Aerial Systems

Author: Camille Alain Rabbath

Publisher: World Scientific

Published: 2010-01-25

Total Pages: 234

ISBN-13: 9814469254

DOWNLOAD EBOOK

This book provides a comprehensive overview of recent advances in the analysis and design of health management systems for cooperating unmanned aerial vehicles. Such systems rely upon monitoring and fault adaptation schemes. Motivation for their study comes from the fact that, despite the use of fault-tolerant control software and hardware embedded onboard air vehicles, overall fleet performance may still be degraded after the occurrence of anomalous events such as systems faults and failures. Cooperative health management (CHM) systems seek to provide adaptation to the presence of faults by capitalizing on the availability of interconnected computing, sensing and actuation resources.This monograph complements the proposed CHM concepts by means of case studies and application examples. It presents fundamental principles and results encompassing optimization, systems theory, information theory, dynamics, modeling and simulation. Written by pioneers in cooperative control, health management and fault-tolerant control for unmanned systems, this book is a unique source of information for designers, researchers and practitioners interested in the field.


Fault Diagnosis and Fault-tolerant Control of Unmanned Aerial Vehicles

Fault Diagnosis and Fault-tolerant Control of Unmanned Aerial Vehicles

Author: Ban Wang

Publisher:

Published: 2018

Total Pages: 205

ISBN-13:

DOWNLOAD EBOOK

With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults.


Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Author: Ziquan Yu

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 226

ISBN-13: 9819976618

DOWNLOAD EBOOK

This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.


A Fault-tolerant Control Architecture for Unmanned Aerial Vehicles

A Fault-tolerant Control Architecture for Unmanned Aerial Vehicles

Author: Graham R. Drozeski

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control, reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.


Autonomous Safety Control of Flight Vehicles

Autonomous Safety Control of Flight Vehicles

Author: Xiang Yu

Publisher: CRC Press

Published: 2021-02-12

Total Pages: 143

ISBN-13: 1000346161

DOWNLOAD EBOOK

Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.


Fault-tolerant Control of a Multirotor Unmanned Aerial Vehicle Under Hardware and Software Failures

Fault-tolerant Control of a Multirotor Unmanned Aerial Vehicle Under Hardware and Software Failures

Author: Hussein Hamadi

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The aim of this work is to propose mechanisms for multirotor drones that allow, on the one hand, to tolerate faults on the drone, and on the other hand to take into account the effects of the wind outdoors. The faults targeted include fault in actuators, sensors, but also software faults on the data fusion algorithms. ln our work, we have developed a robust controller and an exterior disturbance observer capable of cooperating with th, contrai reconfiguration method, to simultaneously tolerate motor failures and exterior wind disturbances through active fault tolerance techniques... We have also proposed a new technique for tolerating actuator faults for a coaxial octorotor drone. This technique is based on a robust command law with reconfigurable "self tuning sliding mode control (STSMC)" gains, where the control gains are readjusted according to the detected error in order to maintain the stability of the system. lndoor experiments are conducted to show and compare our solution with two other fault tolerance techniques. The efficiency and behavior of each method are studied after successive fault injections into the actuators. The main advantages and disadvantages of each method are deduced by analyzing the results obtained. Additionally, we provide an approach for fault tolerance of drone data fusion sensors and software mechanisms. This approach is based on the redundancy of sensors and the diversification of software components.


Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Author: Hao Liu

Publisher: CRC Press

Published: 2022-12-01

Total Pages: 145

ISBN-13: 1000788504

DOWNLOAD EBOOK

This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.


Fault Tolerant Flight Control of Unmanned Aerial Vehicles

Fault Tolerant Flight Control of Unmanned Aerial Vehicles

Author: Iman Sadeghzadeh

Publisher:

Published: 2015

Total Pages: 138

ISBN-13:

DOWNLOAD EBOOK

Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controller should be capable of handling noises and uncertainties imposed to the controlled process. A fault-tolerant controller should be able to control a system with guaranteed stability and good or acceptable performance not only in normal operation conditions but also in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unanticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the presence of faults/damages. This shows the importance and necessity of Fault-Tolerant Control (FTC) to safety-critical and even nowadays for some new and non-safety-critical systems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a significant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs and their components against faults and failures is one of the most important objectives for safety-critical systems including manned airplanes and UAVs. The reliability importance of UAVs is implied in the acknowledgement of the Office of the Secretary of Defense in the UAV Roadmap 2005-2030 by stating that, ?Improving UA [unmanned aircraft] reliability is the single most immediate and long-reaching need to ensure their success?. This statement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systems of UAVs. The main objective of this thesis is to investigate and compare some aspects of fault tolerant flight control techniques such as performance, robustness and capability of handling the faults and failures during the flight of UAVs. Several control techniques have been developed and tested on two main platforms at Concordia University for fault-tolerant control techniques development, implementation and flight test purposes: quadrotor and fixedwing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral-Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternative and theoretically more comprehensive gain scheduling based control technique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. Also a GS-PID controller is used as a fault-tolerant controller and implemented on a fixedwing UAV in the presence of a stuck rudder failure case.