Fault Diagnosis and Fault-tolerant Control of Unmanned Aerial Vehicles

Fault Diagnosis and Fault-tolerant Control of Unmanned Aerial Vehicles

Author: Ban Wang

Publisher:

Published: 2018

Total Pages: 205

ISBN-13:

DOWNLOAD EBOOK

With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults.


Fault Diagnosis and Fault-tolerant Control of Quadrotor UAVs

Fault Diagnosis and Fault-tolerant Control of Quadrotor UAVs

Author: Remus C. Avram

Publisher:

Published: 2016

Total Pages: 125

ISBN-13:

DOWNLOAD EBOOK

Quadrotors represent a special class of Unmanned Aerial Vehicles (UAVs) and have attracted significant attention in recent years due to their potential in various military and civilian applications. However, due to their intrinsic fabrication process and component damage, quadrotors are prone to various type of faults. This dissertation presents the design, analysis, and experimental implementation of fault diagnosis, fault-tolerant control, and controller verification methods to achieve safety assurance and trusted autonomy of quadrotor UAVs. First, the issue of sensor faults is investigated under two different scenarios: (1) the case when all Euler angles are available for measurement; (2) the case when roll and pitch angles are not measurable and need to be estimated. Nonlinear adaptive estimators are designed to provide possible simultaneous accelerometer and gyroscope fault detection, isolation, and bias estimation. Next, the issue of fault-tolerant control of quadrotor UAV in the presence of actuator faults is considered. First, the design of an integrated fault diagnosis and accommodation scheme is investigated. Nonlinear adaptive thresholds are designed to improve the robustness of the fault detection and isolation algorithm. The fault diagnostic information is used for accommodating the effect of the faults. Second, a nonlinear adaptive fault-tolerant altitude and attitude controller is developed to automatically stabilize and recover tracking performance of the quadrotor, even in the presence of possible multiple simultaneous actuator faults. Compared with the first approach, the adaptive control framework is able to automatically accommodate the effects of actuator faults without the need of a fault diagnosis mechanism. Finally, a run-time assurance architecture is investigated for the verification and validation of the adaptive fault-tolerant altitude attitude controller. The algorithms are presented with a rigorous framework aimed at characterizing their performance properties. The above algorithms are implemented and evaluated using a real-time indoor quadrotor test environment. Experimental flight test results are shown to illustrate the effectiveness of the proposed methods.


Autonomous Safety Control of Flight Vehicles

Autonomous Safety Control of Flight Vehicles

Author: Xiang Yu

Publisher: CRC Press

Published: 2021-02-12

Total Pages: 200

ISBN-13: 1000346129

DOWNLOAD EBOOK

Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.


Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Author: Ziquan Yu

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 226

ISBN-13: 9819976618

DOWNLOAD EBOOK

This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.


Safety And Reliability In Cooperating Unmanned Aerial Systems

Safety And Reliability In Cooperating Unmanned Aerial Systems

Author: Camille Alain Rabbath

Publisher: World Scientific

Published: 2010-01-25

Total Pages: 234

ISBN-13: 9814469254

DOWNLOAD EBOOK

This book provides a comprehensive overview of recent advances in the analysis and design of health management systems for cooperating unmanned aerial vehicles. Such systems rely upon monitoring and fault adaptation schemes. Motivation for their study comes from the fact that, despite the use of fault-tolerant control software and hardware embedded onboard air vehicles, overall fleet performance may still be degraded after the occurrence of anomalous events such as systems faults and failures. Cooperative health management (CHM) systems seek to provide adaptation to the presence of faults by capitalizing on the availability of interconnected computing, sensing and actuation resources.This monograph complements the proposed CHM concepts by means of case studies and application examples. It presents fundamental principles and results encompassing optimization, systems theory, information theory, dynamics, modeling and simulation. Written by pioneers in cooperative control, health management and fault-tolerant control for unmanned systems, this book is a unique source of information for designers, researchers and practitioners interested in the field.


Fault Detection and Isolation

Fault Detection and Isolation

Author: Nader Meskin

Publisher: Springer Science & Business Media

Published: 2011-01-27

Total Pages: 176

ISBN-13: 1441983937

DOWNLOAD EBOOK

“Fault Detection and Isolation: Multi-Vehicle Unmanned System” deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. “Fault Detection and Isolation: Multi-Vehicle Unmanned System” is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.


Fault-tolerant Flight Control and Guidance Systems

Fault-tolerant Flight Control and Guidance Systems

Author: Guillaume J. J. Ducard

Publisher: Springer Science & Business Media

Published: 2009-05-14

Total Pages: 268

ISBN-13: 1848825617

DOWNLOAD EBOOK

This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.


Fault Diagnosis and Fault-Tolerant Control of Robotic and Autonomous Systems

Fault Diagnosis and Fault-Tolerant Control of Robotic and Autonomous Systems

Author: Andrea Monteriù

Publisher: Institution of Engineering and Technology

Published: 2020-08

Total Pages: 326

ISBN-13: 178561830X

DOWNLOAD EBOOK

Robotic systems have experienced exponential growth thanks to their incredible adaptability. Modern robots require an increasing level of autonomy, safety and reliability. This book addresses the challenges of increasing and ensuring reliability and safety of modern robotic and autonomous systems. The book provides an overview of research in this field to-date, and addresses advanced topics including fault diagnosis and fault-tolerant control, and the challenging technologies and applications in industrial robotics, robotic manipulators, mobile robots, and autonomous and semi-autonomous vehicles.