Convex Surfaces

Convex Surfaces

Author: Herbert Busemann

Publisher: Courier Corporation

Published: 2013-11-07

Total Pages: 210

ISBN-13: 0486154998

DOWNLOAD EBOOK

This exploration of convex surfaces focuses on extrinsic geometry and applications of the Brunn-Minkowski theory. It also examines intrinsic geometry and the realization of intrinsic metrics. 1958 edition.


Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces

Author: Victor Andreevich Toponogov

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 215

ISBN-13: 0817644024

DOWNLOAD EBOOK

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels


Geometry III

Geometry III

Author: Yu.D. Burago

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 263

ISBN-13: 3662027518

DOWNLOAD EBOOK

A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.


Curves and Surfaces

Curves and Surfaces

Author: Sebastián Montiel

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 395

ISBN-13: 0821847635

DOWNLOAD EBOOK

Offers a focused point of view on the differential geometry of curves and surfaces. This monograph treats the Gauss - Bonnet theorem and discusses the Euler characteristic. It also covers Alexandrov's theorem on embedded compact surfaces in R3 with constant mean curvature.


Handbook of Convex Geometry

Handbook of Convex Geometry

Author: Bozzano G Luisa

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 803

ISBN-13: 0080934390

DOWNLOAD EBOOK

Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.


An Invitation to Alexandrov Geometry

An Invitation to Alexandrov Geometry

Author: Stephanie Alexander

Publisher: Springer

Published: 2019-05-08

Total Pages: 95

ISBN-13: 3030053121

DOWNLOAD EBOOK

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.


Geometry IV

Geometry IV

Author: Yurĭi Grigorevǐc Reshetnyak

Publisher: Springer Science & Business Media

Published: 1993-10-14

Total Pages: 274

ISBN-13: 9783540547013

DOWNLOAD EBOOK

This book contains two surveys on modern research into non-regular Riemannian geometry, carried out mostly by Russian mathematicians. Coverage examines two-dimensional Riemannian manifolds of bounded curvature and metric spaces whose curvature lies between two given constants. This book will be immensely useful to graduate students and researchers in geometry, in particular Riemannian geometry.