Extremes and Related Properties of Random Sequences and Processes

Extremes and Related Properties of Random Sequences and Processes

Author: M. R. Leadbetter

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461254493

DOWNLOAD EBOOK

Classical Extreme Value Theory-the asymptotic distributional theory for maxima of independent, identically distributed random variables-may be regarded as roughly half a century old, even though its roots reach further back into mathematical antiquity. During this period of time it has found significant application-exemplified best perhaps by the book Statistics of Extremes by E. J. Gumbel-as well as a rather complete theoretical development. More recently, beginning with the work of G. S. Watson, S. M. Berman, R. M. Loynes, and H. Cramer, there has been a developing interest in the extension of the theory to include, first, dependent sequences and then continuous parameter stationary processes. The early activity proceeded in two directions-the extension of general theory to certain dependent sequences (e.g., Watson and Loynes), and the beginning of a detailed theory for stationary sequences (Berman) and continuous parameter processes (Cramer) in the normal case. In recent years both lines of development have been actively pursued.


An Introduction to Statistical Modeling of Extreme Values

An Introduction to Statistical Modeling of Extreme Values

Author: Stuart Coles

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 219

ISBN-13: 1447136756

DOWNLOAD EBOOK

Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.


Random Fields and Geometry

Random Fields and Geometry

Author: R. J. Adler

Publisher: Springer Science & Business Media

Published: 2009-01-29

Total Pages: 455

ISBN-13: 0387481168

DOWNLOAD EBOOK

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.


Extremes and Recurrence in Dynamical Systems

Extremes and Recurrence in Dynamical Systems

Author: Valerio Lucarini

Publisher: John Wiley & Sons

Published: 2016-04-25

Total Pages: 325

ISBN-13: 1118632192

DOWNLOAD EBOOK

Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.


Extreme Value Methods with Applications to Finance

Extreme Value Methods with Applications to Finance

Author: Serguei Y. Novak

Publisher: CRC Press

Published: 2011-12-20

Total Pages: 402

ISBN-13: 1439835748

DOWNLOAD EBOOK

Extreme value theory (EVT) deals with extreme (rare) events, which are sometimes reported as outliers. Certain textbooks encourage readers to remove outliers—in other words, to correct reality if it does not fit the model. Recognizing that any model is only an approximation of reality, statisticians are eager to extract information about unknown distribution making as few assumptions as possible. Extreme Value Methods with Applications to Finance concentrates on modern topics in EVT, such as processes of exceedances, compound Poisson approximation, Poisson cluster approximation, and nonparametric estimation methods. These topics have not been fully focused on in other books on extremes. In addition, the book covers: Extremes in samples of random size Methods of estimating extreme quantiles and tail probabilities Self-normalized sums of random variables Measures of market risk Along with examples from finance and insurance to illustrate the methods, Extreme Value Methods with Applications to Finance includes over 200 exercises, making it useful as a reference book, self-study tool, or comprehensive course text. A systematic background to a rapidly growing branch of modern Probability and Statistics: extreme value theory for stationary sequences of random variables.


Stationary Stochastic Processes

Stationary Stochastic Processes

Author: Georg Lindgren

Publisher: CRC Press

Published: 2012-10-01

Total Pages: 378

ISBN-13: 1466557796

DOWNLOAD EBOOK

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.


Probability Models for DNA Sequence Evolution

Probability Models for DNA Sequence Evolution

Author: Rick Durrett

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 246

ISBN-13: 1475762852

DOWNLOAD EBOOK

"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.


Data Analysis and Applications 4

Data Analysis and Applications 4

Author: Andreas Makrides

Publisher: John Wiley & Sons

Published: 2020-03-31

Total Pages: 316

ISBN-13: 1119721504

DOWNLOAD EBOOK

Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.


Asymptotic Methods in the Theory of Gaussian Processes and Fields

Asymptotic Methods in the Theory of Gaussian Processes and Fields

Author: Vladimir I. Piterbarg

Publisher: American Mathematical Soc.

Published: 2012-03-28

Total Pages: 222

ISBN-13: 0821883313

DOWNLOAD EBOOK

This book is devoted to a systematic analysis of asymptotic behavior of distributions of various typical functionals of Gaussian random variables and fields. The text begins with an extended introduction, which explains fundamental ideas and sketches the basic methods fully presented later in the book. Good approximate formulas and sharp estimates of the remainders are obtained for a large class of Gaussian and similar processes. The author devotes special attention to the development of asymptotic analysis methods, emphasizing the method of comparison, the double-sum method and the method of moments. The author has added an extended introduction and has significantly revised the text for this translation, particularly the material on the double-sum method.