Exponential Sums and Differential Equations. (AM-124), Volume 124

Exponential Sums and Differential Equations. (AM-124), Volume 124

Author: Nicholas M. Katz

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 445

ISBN-13: 1400882435

DOWNLOAD EBOOK

This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "corresponding" situations, which provide a systematic explanation of the remarkable "coincidences" found "by hand" in the hypergeometric case.


Exponential Sums and Differential Equations

Exponential Sums and Differential Equations

Author: Nicholas M. Katz

Publisher: Princeton University Press

Published: 1990-09-21

Total Pages: 448

ISBN-13: 9780691085999

DOWNLOAD EBOOK

This book is concerned with two areas of mathematics, at first sight disjoint, and with some of the analogies and interactions between them. These areas are the theory of linear differential equations in one complex variable with polynomial coefficients, and the theory of one parameter families of exponential sums over finite fields. After reviewing some results from representation theory, the book discusses results about differential equations and their differential galois groups (G) and one-parameter families of exponential sums and their geometric monodromy groups (G). The final part of the book is devoted to comparison theorems relating G and G of suitably "corresponding" situations, which provide a systematic explanation of the remarkable "coincidences" found "by hand" in the hypergeometric case.


Van Der Corput's Method of Exponential Sums

Van Der Corput's Method of Exponential Sums

Author: S. W. Graham

Publisher: Cambridge University Press

Published: 1991-01-25

Total Pages: 133

ISBN-13: 0521339278

DOWNLOAD EBOOK

This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.


Fractional Differential Equations

Fractional Differential Equations

Author: Zhi-Zhong Sun

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-08-24

Total Pages: 465

ISBN-13: 3110615304

DOWNLOAD EBOOK

Starting with an introduction to fractional derivatives and numerical approximations, this book presents finite difference methods for fractional differential equations, including time-fractional sub-diffusion equations, time-fractional wave equations, and space-fractional differential equations, among others. Approximation methods for fractional derivatives are developed and approximate accuracies are analyzed in detail.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


p-adic Differential Equations

p-adic Differential Equations

Author: Kiran S. Kedlaya

Publisher: Cambridge University Press

Published: 2010-06-10

Total Pages: 399

ISBN-13: 1139489208

DOWNLOAD EBOOK

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.


Exponential Data Fitting and Its Applications

Exponential Data Fitting and Its Applications

Author: Victor Pereyra

Publisher: Bentham Science Publishers

Published: 2010

Total Pages: 206

ISBN-13: 1608050483

DOWNLOAD EBOOK

"Real and complex exponential data fitting is an important activity in many different areas of science and engineering, ranging from Nuclear Magnetic Resonance Spectroscopy and Lattice Quantum Chromodynamics to Electrical and Chemical Engineering, Vision a"