Fuzzy Expert Systems

Fuzzy Expert Systems

Author: Abraham Kandel

Publisher: CRC Press

Published: 1991-11-12

Total Pages: 344

ISBN-13: 9780849342974

DOWNLOAD EBOOK

Until recently, fuzzy logic was the intellectual plaything of a handful of researchers. Now it is being used to enhance the power of intelligent systems, as well as improve the performance and reduce the cost of intelligent and "smart" products appearing in the commercial market. Fuzzy Expert Systems focuses primarily on the theory of fuzzy expert systems and their applications in science and engineering. In doing so, it provides the first comprehensive study of "soft" expert systems and applications for those systems. Topics covered include general purpose fuzzy expert systems, processing imperfect information using structured frameworks, the fuzzy linguistic inference network generator, fuzzy associative memories, the role of approximate reasoning in medical expert systems, MILORD (a fuzzy expert systems shell), and COMAX (an autonomous fuzzy expert system for tactical communications networks. Fuzzy Expert Systems provides an invaluable reference resource for researchers and students in artificial intelligence (AI) and approximate reasoning (AR), as well as for other researchers looking for methods to apply similar tools in their own designs of intelligent systems.


Fuzzy Sets, Decision Making, and Expert Systems

Fuzzy Sets, Decision Making, and Expert Systems

Author: Hans-Jürgen Zimmermann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 342

ISBN-13: 9400932499

DOWNLOAD EBOOK

In the two decades since its inception by L. Zadeh, the theory of fuzzy sets has matured into a wide-ranging collection of concepts, models, and tech niques for dealing with complex phenomena which do not lend themselves to analysis by classical methods based on probability theory and bivalent logic. Nevertheless, a question which is frequently raised by the skeptics is: Are there, in fact, any significant problem areas in which the use of the theory of fuzzy sets leads to results which could not be obtained by classical methods? The approximately 5000 publications in this area, which are scattered over many areas such as artificial intelligence, computer science, control engineering, decision making, logic, operations research, pattern recognition, robotics and others, provide an affirmative answer to this question. In spite of the large number of publications, good and comprehensive textbooks which could facilitate the access of newcomers to this area and support teaching were missing until recently. To help to close this gap and to provide a textbook for courses in fuzzy set theory which can also be used as an introduction to this field, the first volume ofthis book was published in 1985 [Zimmermann 1985 b]. This volume tried to cover fuzzy set theory and its applications as extensively as possible. Applications could, therefore, only be described to a limited extent and not very detailed.