The last few years have seen great progress in the understanding of nuclei far from stability, i.e. nuclei with a composition that differs radically from that of the stable nuclei that we encounter in Nature. It has become clear that the study of exotic nuclear species reveals many new phenomena, which may make us go back, armed with new insight, to more familiar nuclear systems. The proceedings at the 4th course of the International School of Heavy Ion Physics — Exotic Nuclei, containing the lectures and seminars by world specialists in the field, cover some of the central themes of the physics of exotic nuclei which lie at the forefront of nuclear research.
This special volume contains the proceedings of the 9th Epioptics Workshop, held at the Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily, from July 20 to 26, 2006. The workshop was the 9th in the Epioptics series and the 39th of the International School of Solid State Physics.The workshop was aimed at assessing the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures, and at assessing the usefulness of these techniques for optimization of high-quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is dedicated to the theory of non-linear optics and to dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of scanning probe microscopy to material science and biological samples, dried and in vivo, with the use of different laser sources are also presented.
The book is aimed at assessing the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures, and assessing the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is dedicated to the theory of nonlinear optics and to dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of Scanning Probe Microscopy to Material Science and biological samples, dried and in vivo, with the use of different laser sources are also presented. Materials of particular interest are silicon, semiconductor-metal interfaces, semiconductor and magnetic multi-layers and III-V compound semiconductors.
This book assesses the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures. It also examines the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Emphasis is given to dynamical processes through the use of pump-probe techniques, together with the search for new optical sources. Some new applications of scanning probe microscopy to materials science and biological samples (dried and in vivo) with the use of different laser sources are also presented.
This volume contains the proceedings of the 8th Epioptics Workshop, held at the Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily. The book assesses the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures. The contributions consider the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is placed on the theory of non-linear optics and on dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of Scanning Near-field Optical Microscopy to material science and biological samples, dried and in vivo, with the use of different laser sources are also included.
The book is aimed at assessing the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures, and assessing the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is placed on the theory of non-linear optics and dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of Scanning Probe Microscopy to Material science and biological samples, dried and in vivo, with the use of different laser sources are also presented. Materials of special interest are silicon, semiconductor-metal interfaces, semiconductor and magnetic multi-layers and III-V compound semiconductors.
This book provides an up-to-date understanding of the progress and current problems of the interplay of nonlocality in the classical theories of gravitation and quantum theory. These problems lie on the border between general relativity and quantum physics, including quantum gravity.
Gives an account of advances and various perspectives in the study of nuclei far from stability. This book deals with book nuclear structure models and their derivation from the basic nucleon-nucleon interaction. It discusses: the shell model, the interacting boson model and the cluster model."
This special volume contains the proceedings of the 9th Epioptics Workshop, held at the Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily, from July 20 to 26, 2006. The workshop was the 9th in the Epioptics series and the 39th of the International School of Solid State Physics. The workshop was aimed at assessing the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures, and at assessing the usefulness of these techniques for optimization of high-quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is dedicated to the theory of non-linear optics and to dynamical processes through the use of pump-probe techniques together with the search for new optical sources. Some new applications of scanning probe microscopy to material science and biological samples, dried and in vivo, with the use of different laser sources are also presented. Sample Chapter(s). Longitudinal Gauge Theory of Surface Second Harmonic Generation (966 KB). Contents: Longitudinal Gauge Theory of Surface Second Harmonic Generation (B S Mendoza); Excited State Properties Calculations: From 0 to 3 Dimensional Systems (M Marsili et al.); High Spatial Resolution Raman Scattering for Nano-structures (E Speiser et al.); Vibrational Properties and the Miniband Effect in InGaAs/InP Superlattices (A D Rodrigues et al.); Electronic and Optical Properties of ZnO Between 3 and 32 eV (M Rakel et al.); Order and Clusters in Model Membranes: Detection and Characterization by Infrared Scanning Near-Field Microscopy (J Generosi et al.); Chemical and Magnetic Properties of NiO Thin Films Epitaxially Grown on Fe(001) (A Brambilla); Probing the Dispersion of Surface Phonons by Light Scattering (G Benedek & J P Toennies); and other papers. Readership: Researchers as well as graduate and postgraduate students in applied physics, specifically semiconductors and related areas, electron microscopy and condensed matter physics.
The book is aimed at assessing the capabilities of state-of-the-art optical techniques in elucidating the fundamental electronic and structural properties of semiconductor and metal surfaces, interfaces, thin layers, and layer structures, and assessing the usefulness of these techniques for optimization of high quality multilayer samples through feedback control during materials growth and processing. Particular emphasis is dedicated to the theory of nonlinear optics and to dynamical processes through the use of pumpOCoprobe techniques together with the search for new optical sources. Some new applications of Scanning Probe Microscopy to Material Science and biological samples, dried and in vivo, with the use of different laser sources are also presented. Materials of particular interest are silicon, semiconductorOCometal interfaces, semiconductor and magnetic multi-layers and III-V compound semiconductors.