Exotic Cluster Structures on $SL_n$: The Cremmer-Gervais Case

Exotic Cluster Structures on $SL_n$: The Cremmer-Gervais Case

Author: M. Gekhtman

Publisher: American Mathematical Soc.

Published: 2017-02-20

Total Pages: 106

ISBN-13: 1470422581

DOWNLOAD EBOOK

This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on corresponds to a cluster structure in . The authors have shown before that this conjecture holds for any in the case of the standard Poisson–Lie structure and for all Belavin–Drinfeld classes in , . In this paper the authors establish it for the Cremmer–Gervais Poisson–Lie structure on , which is the least similar to the standard one.


Medial/Skeletal Linking Structures for Multi-Region Configurations

Medial/Skeletal Linking Structures for Multi-Region Configurations

Author: James Damon

Publisher: American Mathematical Soc.

Published: 2018-01-16

Total Pages: 180

ISBN-13: 1470426803

DOWNLOAD EBOOK

The authors consider a generic configuration of regions, consisting of a collection of distinct compact regions in which may be either regions with smooth boundaries disjoint from the others or regions which meet on their piecewise smooth boundaries in a generic way. They introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions' individual shapes and geometric properties as well as the “positional geometry” of the collection. The linking structure extends in a minimal way the individual “skeletal structures” on each of the regions. This allows the authors to significantly extend the mathematical methods introduced for single regions to the configuration of regions.


Hypercontractivity in Group von Neumann Algebras

Hypercontractivity in Group von Neumann Algebras

Author: Marius Junge

Publisher: American Mathematical Soc.

Published: 2017-09-25

Total Pages: 102

ISBN-13: 1470425653

DOWNLOAD EBOOK

In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).


Entire Solutions for Bistable Lattice Differential Equations with Obstacles

Entire Solutions for Bistable Lattice Differential Equations with Obstacles

Author: Aaron Hoffman

Publisher: American Mathematical Soc.

Published: 2018-01-16

Total Pages: 132

ISBN-13: 1470422018

DOWNLOAD EBOOK

The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by “holes”) are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.


Special Values of the Hypergeometric Series

Special Values of the Hypergeometric Series

Author: Akihito Ebisu

Publisher: American Mathematical Soc.

Published: 2017-07-13

Total Pages: 108

ISBN-13: 1470425335

DOWNLOAD EBOOK

In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.


Maximal Abelian Sets of Roots

Maximal Abelian Sets of Roots

Author: R. Lawther

Publisher: American Mathematical Soc.

Published: 2018-01-16

Total Pages: 234

ISBN-13: 147042679X

DOWNLOAD EBOOK

In this work the author lets be an irreducible root system, with Coxeter group . He considers subsets of which are abelian, meaning that no two roots in the set have sum in . He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of : for each -orbit of maximal abelian sets we provide an explicit representative , identify the (setwise) stabilizer of in , and decompose into -orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian -subgroups of finite groups of Lie type over fields of characteristic . Parts of the work presented here have been used to confirm the -rank of , and (somewhat unexpectedly) to obtain for the first time the -ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work concerns those of exceptional type. In these root systems the author introduces the notion of a radical set; such a set corresponds to a subgroup of a simple algebraic group lying in the unipotent radical of a certain maximal parabolic subgroup. The classification of radical maximal abelian sets for the larger root systems of exceptional type presents an interesting challenge; it is accomplished by converting the problem to that of classifying certain graphs modulo a particular equivalence relation.


Needle Decompositions in Riemannian Geometry

Needle Decompositions in Riemannian Geometry

Author: Bo’az Klartag

Publisher: American Mathematical Soc.

Published: 2017-09-25

Total Pages: 90

ISBN-13: 1470425424

DOWNLOAD EBOOK

The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.


Fundamental Solutions and Local Solvability for Nonsmooth Hormander's Operators

Fundamental Solutions and Local Solvability for Nonsmooth Hormander's Operators

Author: Marco Bramanti

Publisher: American Mathematical Soc.

Published: 2017-09-25

Total Pages: 92

ISBN-13: 1470425599

DOWNLOAD EBOOK

The authors consider operators of the form in a bounded domain of where are nonsmooth Hörmander's vector fields of step such that the highest order commutators are only Hölder continuous. Applying Levi's parametrix method the authors construct a local fundamental solution for and provide growth estimates for and its first derivatives with respect to the vector fields. Requiring the existence of one more derivative of the coefficients the authors prove that also possesses second derivatives, and they deduce the local solvability of , constructing, by means of , a solution to with Hölder continuous . The authors also prove estimates on this solution.


Spatially Independent Martingales, Intersections, and Applications

Spatially Independent Martingales, Intersections, and Applications

Author: Pablo Shmerkin

Publisher: American Mathematical Soc.

Published: 2018-02-22

Total Pages: 114

ISBN-13: 1470426889

DOWNLOAD EBOOK

The authors define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. The authors pair the random measures with deterministic families of parametrized measures , and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of . This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals they establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, and (d) rapid Fourier decay. Among other applications, the authors obtain an answer to a question of I. Łaba in connection to the restriction problem for fractal measures.