An Introduction to Extremal Kahler Metrics

An Introduction to Extremal Kahler Metrics

Author: Gábor Székelyhidi

Publisher: American Mathematical Soc.

Published: 2014-06-19

Total Pages: 210

ISBN-13: 1470410478

DOWNLOAD EBOOK

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.


Strings and Geometry

Strings and Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 396

ISBN-13: 9780821837153

DOWNLOAD EBOOK

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.


An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow

Author: Sebastien Boucksom

Publisher: Springer

Published: 2013-10-02

Total Pages: 342

ISBN-13: 3319008196

DOWNLOAD EBOOK

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.


The Theory of Lie Derivatives and Its Applications

The Theory of Lie Derivatives and Its Applications

Author: Kentaro Yano

Publisher: Courier Dover Publications

Published: 2020-05-21

Total Pages: 320

ISBN-13: 0486842096

DOWNLOAD EBOOK

Differential geometry has become one of the most active areas of math publishing, yet a small list of older, unofficial classics continues to interest the contemporary generation of mathematicians and students. This advanced treatment of topics in differential geometry, first published in 1957, was praised as "well written" by The American Mathematical Monthly and hailed as "undoubtedly a valuable addition to the literature." Its topics include: • Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order • Groups of transformations in generalized spaces • The study of global properties of the groups of motions in a compact orientable Riemannian space • Lie derivatives in an almost complex space For advanced undergraduates and graduate students in mathematics


Extrinsic Geometry of Foliations

Extrinsic Geometry of Foliations

Author: Vladimir Rovenski

Publisher: Springer Nature

Published: 2021-05-22

Total Pages: 319

ISBN-13: 3030700674

DOWNLOAD EBOOK

This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.