Semiconductor Quantum Dots

Semiconductor Quantum Dots

Author: Y. Masumoto

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 500

ISBN-13: 3662050013

DOWNLOAD EBOOK

Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.


Electron and Photon Confinement in Semiconductor Nanostructures

Electron and Photon Confinement in Semiconductor Nanostructures

Author: Benoît Deveaud

Publisher: IOS Press

Published: 2003

Total Pages: 584

ISBN-13: 9781586033521

DOWNLOAD EBOOK

The purpose of this course was to give an overview of the physics of artificial semiconductor structures confining electrons and photons. It furnishes the background for several applications in particular in the domain of optical devices, lasers, light emitting diodes or photonic crystals. The effects related to the microactivity polaritons, which are mixed electromagnetic radiation-exciton states inside a semiconconductor microactivity are covered. The study of the characteristics of such states shows strong relations with the domain of cavity quantum electrodynamics and thus with the investigation of some fundamental theoretical concepts.


On the Interactions Between Charges, Phonons and Photons in Electric Field Tunable Quantum Dot Molecules

On the Interactions Between Charges, Phonons and Photons in Electric Field Tunable Quantum Dot Molecules

Author:

Publisher:

Published: 2001

Total Pages: 420

ISBN-13:

DOWNLOAD EBOOK

This dissertation focuses on the optical properties of single InAs/GaAs quantum dot molecules. A quantum dot molecule consists of a pair of quantum dots coupled by a nanometer scale tunneling barrier. Compared to single quantum dots, quantum dot molecules provide greatly enhanced versatility - with the ease of an electric field control, one gains broad flexibility to tune electronic energy levels and manipulate particle tunneling within a QDM. As a consequence, individual QDMs are being intensely studied as controllable interfaces of charge, spin and photonic quantum states at the single particle level. On the other hand, phonons - the quantized vibrations of the underlying crystal lattice - have mostly been left outside the realm of coherent control. In the domain of solid-state quantum technologies, the ubiquitous phonons are mainly considered for the limitations they impose. Omnipresent electron-phonon interactions and the predominantly dissipative nature of phonons are typically a major source of decoherence of the atom-like quantum states hosted by low-dimensional solid-state structures, such as QDMs. Here, we report experimental and theoretical results on the interactions between charges, photons and phonons in electric field tunable quantum dot molecules. Using an effective mass perturbation model, we compute the low energy biexciton states of a quantum dot molecule and apply them to provide a theoretical description of the dipole-dipole interaction between two excitons occupying separate dots in a quantum dot molecule. The expected properties of these so called dipolar states are presented, and we highlight their potential application as a switch for manipulating the transition energy and tunneling properties of the ground state neutral exciton. We then present results from a comprehensive investigation of the quantum confined Stark effect in quantum dot molecules, in which we studied the electric-field dependent energy shifts of exciton states as a function of the tunneling barrier width. Our experimental and computational results reveal that molecular wavefunction formation in quantum dot molecules strongly affects the quantum confined Stark effect, even as the dots are tuned far from resonance for particle tunneling. This dissertation culminates with our report of a novel mechanism by which phonons are made non-dissipative and coherent via electric field control and the optically driven formation of a molecular polaron in a quantum dot molecule. The coherent interaction of a single optical phonon with individual electronic states is revealed via a Fano-type quantum interference that produces a phonon-induced transparency in the optical absorption of individual quantum dot molecules. Experimentally, we find that the transparency is widely tunable by electronic and optical means, and provides a mechanism for amplifying weak coupling channels. This work is significant in that it demonstrates a specific mechanism by which typically incoherent and dissipative phonons are made to behave in a coherent and non-dissipative manner. As such, we demonstrate that phonons may enter the realm of mutual control of quantum states on the single particle level, which so far has been dominated by photons, electrons and spins.


Quantum Dots for Quantum Information Technologies

Quantum Dots for Quantum Information Technologies

Author: Peter Michler

Publisher: Springer

Published: 2017-06-01

Total Pages: 457

ISBN-13: 3319563785

DOWNLOAD EBOOK

This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.


Semiconductor Quantum Optics

Semiconductor Quantum Optics

Author: Mackillo Kira

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 658

ISBN-13: 1139502514

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Semiconductor Quantum Dots

Semiconductor Quantum Dots

Author: Ladislaus Alexander Banyai

Publisher: World Scientific

Published: 1993-05-28

Total Pages: 264

ISBN-13: 9814504238

DOWNLOAD EBOOK

Semiconductor Quantum Dots presents an overview of the background and recent developments in the rapidly growing field of ultrasmall semiconductor microcrystallites, in which the carrier confinement is sufficiently strong to allow only quantized states of the electrons and holes. The main emphasis of this book is the theoretical analysis of the confinement induced modifications of the optical and electronic properties of quantum dots in comparison with extended materials. The book develops the theoretical background material for the analysis of carrier quantum-confinement effects, introduces the different confinement regimes for relative or center-of-mass motion quantization of the electron-hole-pairs, and gives an overview of the best approximation schemes for each regime. A detailed discussion of the carrier states in quantum dots is presented and surface polarization instabilities are analyzed, leading to the self-trapping of carriers near the surface of the dots. The influence of spin-orbit coupling on the quantum-confined carrier states is discussed. The linear and nonlinear optical properties of small and large quantum dots are studied in detail and the influence of the quantum-dot size distribution in many realistic samples is outlined. Phonons in quantum dots as well as the influence of external electric or magnetic fields are also discussed. Last but not least the recent developments dealing with regular systems of quantum dots are also reviewed. All things included, this is an important piece of work on semiconductor quantum dots not to be dismissed by serious researchers and physicists.


Quantum Dot Heterostructures

Quantum Dot Heterostructures

Author: Dieter Bimberg

Publisher: John Wiley & Sons

Published: 1999-03-17

Total Pages: 350

ISBN-13: 9780471973881

DOWNLOAD EBOOK

Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)