Finite Commutative Rings and Their Applications

Finite Commutative Rings and Their Applications

Author: Gilberto Bini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 181

ISBN-13: 1461509572

DOWNLOAD EBOOK

Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.


Introduction To Commutative Algebra

Introduction To Commutative Algebra

Author: Michael F. Atiyah

Publisher: CRC Press

Published: 2018-03-09

Total Pages: 140

ISBN-13: 0429973268

DOWNLOAD EBOOK

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.


Counterexamples in Analysis

Counterexamples in Analysis

Author: Bernard R. Gelbaum

Publisher: Courier Corporation

Published: 2012-07-12

Total Pages: 226

ISBN-13: 0486134911

DOWNLOAD EBOOK

These counterexamples deal mostly with the part of analysis known as "real variables." Covers the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, functions of 2 variables, plane sets, more. 1962 edition.


Counterexamples in Topology

Counterexamples in Topology

Author: Lynn Arthur Steen

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 274

ISBN-13: 0486319296

DOWNLOAD EBOOK

Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.


Topics in Commutative Ring Theory

Topics in Commutative Ring Theory

Author: John J. Watkins

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 228

ISBN-13: 1400828171

DOWNLOAD EBOOK

Topics in Commutative Ring Theory is a textbook for advanced undergraduate students as well as graduate students and mathematicians seeking an accessible introduction to this fascinating area of abstract algebra. Commutative ring theory arose more than a century ago to address questions in geometry and number theory. A commutative ring is a set-such as the integers, complex numbers, or polynomials with real coefficients--with two operations, addition and multiplication. Starting from this simple definition, John Watkins guides readers from basic concepts to Noetherian rings-one of the most important classes of commutative rings--and beyond to the frontiers of current research in the field. Each chapter includes problems that encourage active reading--routine exercises as well as problems that build technical skills and reinforce new concepts. The final chapter is devoted to new computational techniques now available through computers. Careful to avoid intimidating theorems and proofs whenever possible, Watkins emphasizes the historical roots of the subject, like the role of commutative rings in Fermat's last theorem. He leads readers into unexpected territory with discussions on rings of continuous functions and the set-theoretic foundations of mathematics. Written by an award-winning teacher, this is the first introductory textbook to require no prior knowledge of ring theory to get started. Refreshingly informal without ever sacrificing mathematical rigor, Topics in Commutative Ring Theory is an ideal resource for anyone seeking entry into this stimulating field of study.


Non-Noetherian Commutative Ring Theory

Non-Noetherian Commutative Ring Theory

Author: S.T. Chapman

Publisher: Springer Science & Business Media

Published: 2000-10-31

Total Pages: 504

ISBN-13: 9780792364924

DOWNLOAD EBOOK

This volume consists of twenty-one articles by many of the most prominent researchers in non-Noetherian commutative ring theory. The articles combine in various degrees surveys of past results, recent results that have never before seen print, open problems, and an extensive bibliography. One hundred open problems supplied by the authors have been collected in the volume's concluding chapter. The entire collection provides a comprehensive survey of the development of the field over the last ten years and points to future directions of research in the area. Audience: Researchers and graduate students; the volume is an appropriate source of material for several semester-long graduate-level seminars and courses.


A First Course in Noncommutative Rings

A First Course in Noncommutative Rings

Author: T.Y. Lam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 410

ISBN-13: 1468404067

DOWNLOAD EBOOK

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.


(Mostly) Commutative Algebra

(Mostly) Commutative Algebra

Author: Antoine Chambert-Loir

Publisher: Springer Nature

Published: 2021-04-08

Total Pages: 466

ISBN-13: 3030615952

DOWNLOAD EBOOK

This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields. The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry. More than 300 exercises will allow the reader to deepen his understanding of the subject. The book also includes 11 historical vignettes about mathematicians who contributed to commutative algebra.