Evolutionary Global Optimization, Manifolds and Applications

Evolutionary Global Optimization, Manifolds and Applications

Author: Hime Aguiar e Oliveira Junior

Publisher: Springer

Published: 2015-12-09

Total Pages: 143

ISBN-13: 3319264672

DOWNLOAD EBOOK

This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory. Many necessary definitions and fundamental results are provided, with the formal mathematical requirements limited to a minimum, while the focus is kept firmly on continuous problems. The book offers a valuable resource for students, researchers and practitioners. It is suitable for university courses on optimization and for self-study.


Swarm, Evolutionary, and Memetic Computing

Swarm, Evolutionary, and Memetic Computing

Author: Bijaya Ketan Panigrahi

Publisher: Springer

Published: 2013-12-13

Total Pages: 800

ISBN-13: 3319037536

DOWNLOAD EBOOK

The two-volume set LNCS 8297 and LNCS 8298 constitutes the proceedings of the 4th International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2013, held in Chennai, India, in December 2013. The total of 123 papers presented in this volume set was carefully reviewed and selected for inclusion in the proceedings. They cover cutting-edge research on swarm, evolutionary and memetic computing, neural and fuzzy computing and its application.


Evolutionary Large-Scale Multi-Objective Optimization and Applications

Evolutionary Large-Scale Multi-Objective Optimization and Applications

Author: Xingyi Zhang

Publisher: John Wiley & Sons

Published: 2024-09-11

Total Pages: 358

ISBN-13: 1394178417

DOWNLOAD EBOOK

Tackle the most challenging problems in science and engineering with these cutting-edge algorithms Multi-objective optimization problems (MOPs) are those in which more than one objective needs to be optimized simultaneously. As a ubiquitous component of research and engineering projects, these problems are notoriously challenging. In recent years, evolutionary algorithms (EAs) have shown significant promise in their ability to solve MOPs, but challenges remain at the level of large-scale multi-objective optimization problems (LSMOPs), where the number of variables increases and the optimized solution is correspondingly harder to reach. Evolutionary Large-Scale Multi-Objective Optimization and Applications constitutes a systematic overview of EAs and their capacity to tackle LSMOPs. It offers an introduction to both the problem class and the algorithms before delving into some of the cutting-edge algorithms which have been specifically adapted to solving LSMOPs. Deeply engaged with specific applications and alert to the latest developments in the field, it’s a must-read for students and researchers facing these famously complex but crucial optimization problems. The book’s readers will also find: Analysis of multi-optimization problems in fields such as machine learning, network science, vehicle routing, and more Discussion of benchmark problems and performance indicators for LSMOPs Presentation of a new taxonomy of algorithms in the field Evolutionary Large-Scale Multi-Objective Optimization and Applications is ideal for advanced students, researchers, and scientists and engineers facing complex optimization problems.


Evolutionary Computation in Combinatorial Optimization

Evolutionary Computation in Combinatorial Optimization

Author: Jens Gottlieb

Publisher: Springer Science & Business Media

Published: 2004-03-26

Total Pages: 252

ISBN-13: 3540213678

DOWNLOAD EBOOK

This book constitutes the refereed proceedings for the 4th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2004, held in Coimbra, Portugal, in April together with EuroGP 2004 and six workshops on evolutionary computing. The 23 revised full papers presented were carefully reviewed and selected from 86 submissions. Among the topics addressed are evolutionary algorithms as well as metaheuristics like memetic algorithms, ant colony optimization, and scatter search; the papers are dealing with representations, operators, search spaces, adaptation, comparison of algorithms, hybridization of different methods, and theory. Among the combinatorial optimization problems studied are graph coloring, network design, cutting, packing, scheduling, timetabling, traveling salesman, vehicle routing, and various other real-world applications.


Bio-Inspired Computing: Theories and Applications

Bio-Inspired Computing: Theories and Applications

Author: Linqiang Pan

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 653

ISBN-13: 9811613540

DOWNLOAD EBOOK

This volume constitutes the revised selected papers of the 15th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2020, held in Qingdao, China, in October 2020. The 43 full papers presented in both volumes were selected from 109 submissions. The papers are organized according to the topical headings: evolutionary computation and swarm intelligence; neural networks and machine learning; DNA computing and membrane computing.


Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization

Author: Shigeru Obayashi

Publisher: Springer

Published: 2007-05-20

Total Pages: 972

ISBN-13: 3540709282

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, held in Matsushima, Japan in March 2007. The 65 revised full papers presented together with 4 invited papers are organized in topical sections on algorithm design, algorithm improvements, alternative methods, applications, engineering design, many objectives, objective handling, and performance assessments.


Topological Data Analysis for Genomics and Evolution

Topological Data Analysis for Genomics and Evolution

Author: Raúl Rabadán

Publisher: Cambridge University Press

Published: 2019-10-31

Total Pages: 521

ISBN-13: 1108753396

DOWNLOAD EBOOK

Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.


Applications of Advanced Optimization Techniques in Industrial Engineering

Applications of Advanced Optimization Techniques in Industrial Engineering

Author: Abhinav Goel

Publisher: CRC Press

Published: 2022-03-09

Total Pages: 243

ISBN-13: 1000544869

DOWNLOAD EBOOK

This book provides different approaches used to analyze, draw attention, and provide an understanding of the advancements in the optimization field across the globe. It brings all of the latest methodologies, tools, and techniques related to optimization and industrial engineering into a single volume to build insights towards the latest advancements in various domains. Applications of Advanced Optimization Techniques in Industrial Engineering includes the basic concept of optimization, techniques, and applications related to industrial engineering. Concepts are introduced in a sequential way along with explanations, illustrations, and solved examples. The book goes on to explore applications of operations research and covers empirical properties of a variety of engineering disciplines. It presents network scheduling, production planning, industrial and manufacturing system issues, and their implications in the real world. The book caters to academicians, researchers, professionals in inventory analytics, business analytics, investment managers, finance firms, storage-related managers, and engineers working in engineering industries and data management fields.


Nonlinear Parameter Optimization Using R Tools

Nonlinear Parameter Optimization Using R Tools

Author: John C. Nash

Publisher: John Wiley & Sons

Published: 2014-05-27

Total Pages: 303

ISBN-13: 1118569288

DOWNLOAD EBOOK

Nonlinear Parameter Optimization Using R John C. Nash, Telfer School of Management, University of Ottawa, Canada A systematic and comprehensive treatment of optimization software using R In recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non–linear, multivariable conditions, more quickly than ever before. Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout. Nonlinear Parameter Optimization with R: Provides a comprehensive treatment of optimization techniques Examines optimization problems that arise in statistics and how to solve them using R Enables researchers and practitioners to solve parameter determination problems Presents traditional methods as well as recent developments in R Is supported by an accompanying website featuring R code, examples and datasets Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.


Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds

Author: P.-A. Absil

Publisher: Princeton University Press

Published: 2009-04-11

Total Pages: 240

ISBN-13: 1400830249

DOWNLOAD EBOOK

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.