Evolutionary Computation with Intelligent Systems

Evolutionary Computation with Intelligent Systems

Author: R.S. Chauhan

Publisher: CRC Press

Published: 2022-03-29

Total Pages: 316

ISBN-13: 1000550540

DOWNLOAD EBOOK

This book focuses on cutting-edge innovations and core theories, principles, and algorithms applicable to a wide area. Real-life applications, case studies, and examples are included along with emerging trends, design, and optimized solutions pivoting around the needs of Society 5.0. Evolutionary Computation with Intelligent Systems: A Multidisciplinary Approach to Society 5.0 provides a holistic view of evolutionary computation techniques including principles, procedures, and future applications with real-life examples. The book comprehensively explains evolutionary computation, design, principles, development trends, and optimization and describes how it can transform the operating context of the organization. It exemplifies the potential of evolutionary computation for the next generation and the role of cloud computing in shaping Society 5.0. It also provides insight into various platforms, paradigms, techniques, and tools used in diverse fields. This book appeals to a variety of readers such as academicians, researchers, research scholars, and postgraduates.


Intelligent Systems

Intelligent Systems

Author: Crina Grosan

Publisher: Springer Science & Business Media

Published: 2011-07-29

Total Pages: 456

ISBN-13: 364221004X

DOWNLOAD EBOOK

Computational intelligence is a well-established paradigm, where new theories with a sound biological understanding have been evolving. The current experimental systems have many of the characteristics of biological computers (brains in other words) and are beginning to be built to perform a variety of tasks that are difficult or impossible to do with conventional computers. As evident, the ultimate achievement in this field would be to mimic or exceed human cognitive capabilities including reasoning, recognition, creativity, emotions, understanding, learning and so on. This book comprising of 17 chapters offers a step-by-step introduction (in a chronological order) to the various modern computational intelligence tools used in practical problem solving. Staring with different search techniques including informed and uninformed search, heuristic search, minmax, alpha-beta pruning methods, evolutionary algorithms and swarm intelligent techniques; the authors illustrate the design of knowledge-based systems and advanced expert systems, which incorporate uncertainty and fuzziness. Machine learning algorithms including decision trees and artificial neural networks are presented and finally the fundamentals of hybrid intelligent systems are also depicted. Academics, scientists as well as engineers engaged in research, development and application of computational intelligence techniques, machine learning and data mining would find the comprehensive coverage of this book invaluable.


Evolutionary Robotics

Evolutionary Robotics

Author: Lingfeng Wang

Publisher: World Scientific

Published: 2006

Total Pages: 267

ISBN-13: 9812773142

DOWNLOAD EBOOK

This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.


Artificial Intelligence and Evolutionary Computations in Engineering Systems

Artificial Intelligence and Evolutionary Computations in Engineering Systems

Author: Subhransu Sekhar Dash

Publisher: Springer

Published: 2018-03-19

Total Pages: 714

ISBN-13: 9811078688

DOWNLOAD EBOOK

The book is a collection of high-quality peer-reviewed research papers presented in the International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems (ICAIECES 2017). The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry have presented their original work and ideas, information, techniques and applications in the field of communication, computing and power technologies.


Evolutionary Computation & Swarm Intelligence

Evolutionary Computation & Swarm Intelligence

Author: Fabio Caraffini

Publisher: MDPI

Published: 2020-11-25

Total Pages: 286

ISBN-13: 3039434543

DOWNLOAD EBOOK

The vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.


Fundamentals of Computational Intelligence

Fundamentals of Computational Intelligence

Author: James M. Keller

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 378

ISBN-13: 111921436X

DOWNLOAD EBOOK

Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.


Evolutionary Computation for Dynamic Optimization Problems

Evolutionary Computation for Dynamic Optimization Problems

Author: Shengxiang Yang

Publisher: Springer

Published: 2013-11-18

Total Pages: 479

ISBN-13: 3642384161

DOWNLOAD EBOOK

This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.


Modelling and Development of Intelligent Systems

Modelling and Development of Intelligent Systems

Author: Dana Simian

Publisher: Springer Nature

Published: 2021-02-12

Total Pages: 411

ISBN-13: 3030685276

DOWNLOAD EBOOK

This volume constitutes the refereed proceedings of the 7th International Conference on Modelling and Development of Intelligent Systems, MDIS 2020, held in Sibiu, Romania, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 25 revised full papers presented in the volume were carefully reviewed and selected from 57 submissions. The papers are organized in topical sections on ​evolutionary computing; intelligent systems for decision support; machine learning; mathematical models for development of intelligent systems; modelling and optimization of dynamic systems; ontology engineering.


Creative Evolutionary Systems

Creative Evolutionary Systems

Author: David W. Corne

Publisher: Elsevier

Published: 2001-07-25

Total Pages: 617

ISBN-13: 0080503373

DOWNLOAD EBOOK

The use of evolution for creative problem solving is one of the most exciting and potentially significant areas in computer science today. Evolutionary computation is a way of solving problems, or generating designs, using mechanisms derived from natural evolution. This book concentrates on applying important ideas in evolutionary computation to creative areas, such as art, music, architecture, and design. It shows how human interaction, new representations, and approaches such as open-ended evolution can extend the capabilities of evolutionary computation from optimization of existing solutions to innovation and the generation of entirely new and original solutions. This book takes a fresh look at creativity, exploring what it is and how the actions of evolution can resemble it. Examples of novel evolved solutions are presented in a variety of creative disciplines. The editors have compiled contributions by leading researchers in each discipline. If you are a savvy and curious computing professional, a computer-literate artist, musician or designer, or a specialist in evolutionary computation and its applications, you will find this a fascinating survey of the most interesting work being done in the area today.* Explores the use of evolutionary computation to generate novel creations including contemporary melodies, photo-realistic faces, jazz music in collaboration with a human composer, architectural designs, working electronic circuits, novel aircraft maneuvers, two- and three-dimensional art, and original proteins.* Presents resulting designs in black-and-white and color illustrations.* Includes a twin-format audio/CD-ROM with evolved music and hands-on activities for the reader, including evolved images, animations, and source-code related to the text.* Describes in full the methods used so that readers with sufficient skill and interest can replicate the work and extend it.* Is written for a general computer science audience, providing coherent and unified treatment across multiple disciplines.


Illustrating Evolutionary Computation with Mathematica

Illustrating Evolutionary Computation with Mathematica

Author: Christian Jacob

Publisher: Elsevier

Published: 2001-02-23

Total Pages: 605

ISBN-13: 0080508456

DOWNLOAD EBOOK

An essential capacity of intelligence is the ability to learn. An artificially intelligent system that could learn would not have to be programmed for every eventuality; it could adapt to its changing environment and conditions just as biological systems do. Illustrating Evolutionary Computation with Mathematica introduces evolutionary computation to the technically savvy reader who wishes to explore this fascinating and increasingly important field. Unique among books on evolutionary computation, the book also explores the application of evolution to developmental processes in nature, such as the growth processes in cells and plants. If you are a newcomer to the evolutionary computation field, an engineer, a programmer, or even a biologist wanting to learn how to model the evolution and coevolution of plants, this book will provide you with a visually rich and engaging account of this complex subject.* Introduces the major mechanisms of biological evolution.* Demonstrates many fascinating aspects of evolution in nature with simple, yet illustrative examples.* Explains each of the major branches of evolutionary computation: genetic algorithms, genetic programming, evolutionary programming, and evolution strategies.* Demonstrates the programming of computers by evolutionary principles using Evolvica, a genetic programming system designed by the author.* Shows in detail how to evolve developmental programs modeled by cellular automata and Lindenmayer systems.* Provides Mathematica notebooks on the Web that include all the programs in the book and supporting animations, movies, and graphics.