Evolution Equations Arising in the Modelling of Life Sciences

Evolution Equations Arising in the Modelling of Life Sciences

Author: Messoud Efendiev

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 224

ISBN-13: 3034806159

DOWNLOAD EBOOK

This book deals with the modeling, analysis and simulation of problems arising in the life sciences, and especially in biological processes. The models and findings presented result from intensive discussions with microbiologists, doctors and medical staff, physicists, chemists and industrial engineers and are based on experimental data. They lead to a new class of degenerate density-dependent nonlinear reaction-diffusion convective equations that simultaneously comprise two kinds of degeneracy: porous-medium and fast-diffusion type degeneracy. To date, this class is still not clearly understood in the mathematical literature and thus especially interesting. The author both derives realistic life science models and their above-mentioned governing equations of the degenerate types and systematically studies these classes of equations. In each concrete case well-posedness, the dependence of solutions on boundary conditions reflecting some properties of the environment, and the large-time behavior of solutions are investigated and in some instances also studied numerically.


Parabolic Equations in Biology

Parabolic Equations in Biology

Author: Benoît Perthame

Publisher: Springer

Published: 2015-09-09

Total Pages: 204

ISBN-13: 331919500X

DOWNLOAD EBOOK

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.


Topological Structure of the Solution Set for Evolution Inclusions

Topological Structure of the Solution Set for Evolution Inclusions

Author: Yong Zhou

Publisher: Springer

Published: 2017-10-31

Total Pages: 278

ISBN-13: 9811066566

DOWNLOAD EBOOK

This book systematically presents the topological structure of solution sets and attractability for nonlinear evolution inclusions, together with its relevant applications in control problems and partial differential equations. It provides readers the background material needed to delve deeper into the subject and explore the rich research literature. In addition, the book addresses many of the basic techniques and results recently developed in connection with this theory, including the structure of solution sets for evolution inclusions with m-dissipative operators; quasi-autonomous and non-autonomous evolution inclusions and control systems; evolution inclusions with the Hille-Yosida operator; functional evolution inclusions; impulsive evolution inclusions; and stochastic evolution inclusions. Several applications of evolution inclusions and control systems are also discussed in detail. Based on extensive research work conducted by the authors and other experts over the past four years, the information presented is cutting-edge and comprehensive. As such, the book fills an important gap in the body of literature on the structure of evolution inclusions and its applications.


Linear and Nonlinear Non-Fredholm Operators

Linear and Nonlinear Non-Fredholm Operators

Author: Messoud Efendiev

Publisher: Springer Nature

Published: 2023-02-04

Total Pages: 217

ISBN-13: 9811998809

DOWNLOAD EBOOK

This book is devoted to a new aspect of linear and nonlinear non-Fredholm operators and its applications. The domain of applications of theory developed here is potentially much wider than that presented in the book. Therefore, a goal of this book is to invite readers to make contributions to this fascinating area of mathematics. First, it is worth noting that linear Fredholm operators, one of the most important classes of linear maps in mathematics, were introduced around 1900 in the study of integral operators. These linear Fredholm operators between Banach spaces share, in some sense, many properties with linear maps between finite dimensional spaces. Since the end of the previous century there has been renewed interest in linear – nonlinear Fredholm maps from a topological degree point of view and its applications, following a period of “stagnation" in the mid-1960s. Now, linear and nonlinear Fredholm operator theory and the solvability of corresponding equations both from the analytical and topological points of view are quite well understood. Also noteworthy is, that as a by-product of our results, we have obtained an important tool for modelers working in mathematical biology and mathematical medicine, namely, the necessary conditions for preserving positive cones for systems of equations without Fredholm property containing local – nonlocal diffusion as well as terms for transport and nonlinear interactions.


Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations

Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations

Author: Messoud Efendiev

Publisher: Springer

Published: 2018-10-17

Total Pages: 273

ISBN-13: 3319984071

DOWNLOAD EBOOK

This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists.


Mathematical Modeling of Mitochondrial Swelling

Mathematical Modeling of Mitochondrial Swelling

Author: Messoud Efendiev

Publisher: Springer

Published: 2018-10-02

Total Pages: 230

ISBN-13: 3319991000

DOWNLOAD EBOOK

The mathematical models considered in this book can help to understand the swelling of mitochondria. For the first time, it presents new mathematical models of mitochondrial swelling that take into account, in particular, spatial effects. The results presented here could make it possible to predict properties of the underlying biological mechanisms. Taking into account that mitochondria could move within a cell, lead to a PDE-PDE model. The book discusses the well-posedness and long-term dynamics of solutions, depending on boundary conditions reflecting the in vitro and in vivo cases. These analytical and numerical results have inspired colleagues from the Institute of Pharmacology and Toxicology of the Helmholtz Center Munich to design new experiments justifying the theoretical and numerical results that are obtained. The book is intended for graduates students and researchers with a solid mathematical background and an interest in cell biology.


The Many Facets of Complexity Science

The Many Facets of Complexity Science

Author: Dimitri Volchenkov

Publisher: Springer Nature

Published: 2021-08-30

Total Pages: 210

ISBN-13: 981162853X

DOWNLOAD EBOOK

This book explores recent developments in theoretical research and data analysis of real-world complex systems, organized in three parts, namely Entropy, information, and complexity functions Multistability, oscillations, and rhythmic synchronization Diffusions, rotation, and convection in fluids The collection of works devoted to the memory of Professor Valentin Afraimovich provides a deep insight into the recent developments in complexity science by introducing new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to economics, genetics, engineering vibrations, as well as classic problems in physics, fluid and climate dynamics, and urban dynamics. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, and urban planners.


Mathematical Methods in Modern Complexity Science

Mathematical Methods in Modern Complexity Science

Author: Dimitri Volchenkov

Publisher: Springer Nature

Published: 2022-03-14

Total Pages: 202

ISBN-13: 3030794121

DOWNLOAD EBOOK

This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems


Nonlinear Dynamics, Chaos, and Complexity

Nonlinear Dynamics, Chaos, and Complexity

Author: Dimitri Volchenkov

Publisher: Springer Nature

Published: 2020-12-14

Total Pages: 198

ISBN-13: 9811590346

DOWNLOAD EBOOK

This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).


Attractors for Degenerate Parabolic Type Equations

Attractors for Degenerate Parabolic Type Equations

Author: Messoud Efendiev

Publisher: American Mathematical Soc.

Published: 2013-09-26

Total Pages: 233

ISBN-13: 1470409852

DOWNLOAD EBOOK

This book deals with the long-time behavior of solutions of degenerate parabolic dissipative equations arising in the study of biological, ecological, and physical problems. Examples include porous media equations, -Laplacian and doubly nonlinear equations, as well as degenerate diffusion equations with chemotaxis and ODE-PDE coupling systems. For the first time, the long-time dynamics of various classes of degenerate parabolic equations, both semilinear and quasilinear, are systematically studied in terms of their global and exponential attractors. The long-time behavior of many dissipative systems generated by evolution equations of mathematical physics can be described in terms of global attractors. In the case of dissipative PDEs in bounded domains, this attractor usually has finite Hausdorff and fractal dimension. Hence, if the global attractor exists, its defining property guarantees that the dynamical system reduced to the attractor contains all of the nontrivial dynamics of the original system. Moreover, the reduced phase space is really "thinner" than the initial phase space. However, in contrast to nondegenerate parabolic type equations, for a quite large class of degenerate parabolic type equations, their global attractors can have infinite fractal dimension. The main goal of the present book is to give a detailed and systematic study of the well-posedness and the dynamics of the semigroup associated to important degenerate parabolic equations in terms of their global and exponential attractors. Fundamental topics include existence of attractors, convergence of the dynamics and the rate of convergence, as well as the determination of the fractal dimension and the Kolmogorov entropy of corresponding attractors. The analysis and results in this book show that there are new effects related to the attractor of such degenerate equations that cannot be observed in the case of nondegenerate equations in bounded domains. This book is published in cooperation with Real Sociedad Matemática Española (RSME).