"Wright's views about population genetics and evolution are so fundamental and so comprehensive that every serious student must examine these books firsthand. . . . Publication of this treatise is a major event in evolutionary biology."-Daniel L. Hartl, BioScience
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links
This volume is the result of a symposium entitled "Variation in Life Histories: Genetics and Evolutionary Processes" sponsored by the Program in Evolutionary Ecology and Behavior of the University of Iowa and held in Iowa City on October 13 and 14, 1980. Prompted by a recent upsurge of interest in the evolution of life histories, we chose this topic because of the obvious association between life history traits and Darwinian fit ness. If such an association were to be fruitfully investigated, it would require the closer cooperation of population and evolutionary ecologists and quantitative and population geneticists. To encourage such an association, our symposium had four major aims: first, to facilitate intellectual exchange across disciplines among an array of biologists studying life histories; second, to encourage exploration of genetic variance and covari ance for life history traits; third, to consider the ecological background for genetic vari ability; and finally, to facilitate a comparative overview both within and among species. Obviously such broad aims cannot be met totally in a single volume, but we think we have succeeded reasonably well in providing a representative and nourishing intel lectual feast. We see this book as a stimulus to the coordination of future efforts in an important and expanding area of inquiry. We have divided the book into six sections.
The Fourth Edition of Genetics of Populations is the most current, comprehensive, and accessible introduction to the field for advanced undergraduate and graduate students, and researchers in genetics, evolution, conservation, and related fields. In the past several years, interest in the application of population genetics principles to new molecular data has increased greatly, and Dr. Hedrick's new edition exemplifies his commitment to keeping pace with this dynamic area of study. Reorganized to allow students to focus more sharply on key material, the Fourth Edition integrates coverage of theoretical issues with a clear presentation of experimental population genetics and empirical data. Drawing examples from both recent and classic studies, and using a variety of organisms to illustrate the vast developments of population genetics, this text provides students and researchers with the most comprehensive resource in the field.
Self-contained and reader-friendly, this volume provides a balanced blend of evolutionary theory, population genetics, and systematics with an emphasis on the experimental approach.
This textbook shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure.