These notes describe how to average and fit numerical data that have been obtained either by simulation or measurement. Following an introduction on how to estimate various average values, they discuss how to determine error bars on those estimates, and how to proceed for combinations of measured values. Techniques for fitting data to a given set of models will be described in the second part of these notes. This primer equips readers to properly derive the results covered, presenting the content in a style suitable for a physics audience. It also includes scripts in python, perl and gnuplot for performing a number of tasks in data analysis and fitting, thereby providing readers with a useful reference guide.
This book provides the first extensive analytic comparison between models and results from econophysics and financial economics in an accessible and common vocabulary. Unlike other publications dedicated to econophysics, it situates this field in the evolution of financial economics by laying the foundations for common theoretical framework and models.
A comprehensive introduction to state-of-the-art quantum Monte Carlo techniques for applications in strongly-interacting systems. Including variational wave functions, stochastic samplings, the variational technique, optimisation techniques, real-time dynamics and projection methods and recent developments on the continuum space. An extensive resource for students and researchers.
Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
This book illuminates the complex process of problem solving, including formulating the problem, collecting and analyzing data, and presenting the conclusions.
This is an introductory single-term numerical analysis text with a modern scientific computing flavor. It offers an immediate immersion in numerical methods featuring an up-to-date approach to computational matrix algebra and an emphasis on methods used in actual software packages, always highlighting how hardware concerns can impact the choice of algorithm. It fills the need for a text that is mathematical enough for a numerical analysis course yet applied enough for students of science and engineering taking it with practical need in mind. The standard methods of numerical analysis are rigorously derived with results stated carefully and many proven. But while this is the focus, topics such as parallel implementations, the Basic Linear Algebra Subroutines, halfto quadruple-precision computing, and other practical matters are frequently discussed as well. Prior computing experience is not assumed. Optional MATLAB subsections for each section provide a comprehensive self-taught tutorial and also allow students to engage in numerical experiments with the methods they have just read about. The text may also be used with other computing environments. This new edition offers a complete and thorough update. Parallel approaches, emerging hardware capabilities, computational modeling, and data science are given greater weight.
This book is a collection of selected papers presented at the International Conference on Mathematical Analysis and Computing (ICMAC 2019) held at Sri Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24 December 2019. Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for problems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas.